Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_2_a10, author = {Daryna D. Sobolieva}, title = {Large deviation principle for one-dimensional {SDEs} with discontinuous coefficients}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {102--108}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/} }
TY - JOUR AU - Daryna D. Sobolieva TI - Large deviation principle for one-dimensional SDEs with discontinuous coefficients JO - Teoriâ slučajnyh processov PY - 2012 SP - 102 EP - 108 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/ LA - en ID - THSP_2012_18_2_a10 ER -
Daryna D. Sobolieva. Large deviation principle for one-dimensional SDEs with discontinuous coefficients. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 102-108. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/
[1] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984 | MR | Zbl
[2] T. S. Chiang, S. J. Sheu, “Large deviations of diffusion processes with discontinuous drift and their occupation times”, Ann. Probab., 28 (2000), 140–165 | DOI | MR | Zbl
[3] T. S. Chiang, S. J. Sheu, “Small perturbations of diffusions in inhomogeneous media”, Ann. Inst. Henri Poincaré, 38:3 (2002), 285–318 | DOI | MR | Zbl
[4] I. H. Krykun, “Large deviation principle for stochastic equations with local time”, Theory of Stochastic Processes, 15(31):2 (2009), 140–155 | MR | Zbl
[5] A. M. Kulik, D. D. Soboleva, “Large deviations for one-dimensional SDE with discontinuous diffusion coefficient”, Theory of Stochastic Processes, 18(34):1 (2012), 101–110 | MR | Zbl
[6] Jin Feng, Thomas G. Kurtz, Large Deviations for Stochastic Processes, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[7] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981 | MR | Zbl