Large deviation principle for one-dimensional SDEs with discontinuous coefficients
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 102-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the large deviation principle for one-dimensional SDEs with discontinuous coefficients. It is shown that the discontinuity of coefficients leads, in general, to the LDP asymptotics with a rate function which differs from the rate function in the standard Freidlin–Wentzell theorem.
Keywords: Large deviation principle, Varadhan lemma, Bryc formula, change of measure.
@article{THSP_2012_18_2_a10,
     author = {Daryna D. Sobolieva},
     title = {Large deviation principle for one-dimensional {SDEs} with discontinuous coefficients},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {102--108},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/}
}
TY  - JOUR
AU  - Daryna D. Sobolieva
TI  - Large deviation principle for one-dimensional SDEs with discontinuous coefficients
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 102
EP  - 108
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/
LA  - en
ID  - THSP_2012_18_2_a10
ER  - 
%0 Journal Article
%A Daryna D. Sobolieva
%T Large deviation principle for one-dimensional SDEs with discontinuous coefficients
%J Teoriâ slučajnyh processov
%D 2012
%P 102-108
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/
%G en
%F THSP_2012_18_2_a10
Daryna D. Sobolieva. Large deviation principle for one-dimensional SDEs with discontinuous coefficients. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 102-108. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a10/

[1] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1984 | MR | Zbl

[2] T. S. Chiang, S. J. Sheu, “Large deviations of diffusion processes with discontinuous drift and their occupation times”, Ann. Probab., 28 (2000), 140–165 | DOI | MR | Zbl

[3] T. S. Chiang, S. J. Sheu, “Small perturbations of diffusions in inhomogeneous media”, Ann. Inst. Henri Poincaré, 38:3 (2002), 285–318 | DOI | MR | Zbl

[4] I. H. Krykun, “Large deviation principle for stochastic equations with local time”, Theory of Stochastic Processes, 15(31):2 (2009), 140–155 | MR | Zbl

[5] A. M. Kulik, D. D. Soboleva, “Large deviations for one-dimensional SDE with discontinuous diffusion coefficient”, Theory of Stochastic Processes, 18(34):1 (2012), 101–110 | MR | Zbl

[6] Jin Feng, Thomas G. Kurtz, Large Deviations for Stochastic Processes, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[7] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981 | MR | Zbl