Iterated logarithm law for sizes of clusters in Arratia flow
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 1-7
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotics of sizes of clusters for the Arratia flow is considered, the Arratia flow being a system of coalescing Wiener processes starting from the real axis and independent before they meet. A cluster at time $t$ is defined as a set of particles that have glued together not later than at $t.$ The results obtained are remarked to hold for any Arratia flow with a Lipschitz drift.
Keywords:
Arratia flow, cluster, Brownian motion, Gaussian processes, concentration of measure.
@article{THSP_2012_18_2_a0,
author = {A. A. Dorogovtsev and A. V. Gnedin and M. B. Vovchanskii},
title = {Iterated logarithm law for sizes of clusters in {Arratia} flow},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {1--7},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/}
}
TY - JOUR AU - A. A. Dorogovtsev AU - A. V. Gnedin AU - M. B. Vovchanskii TI - Iterated logarithm law for sizes of clusters in Arratia flow JO - Teoriâ slučajnyh processov PY - 2012 SP - 1 EP - 7 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/ LA - en ID - THSP_2012_18_2_a0 ER -
A. A. Dorogovtsev; A. V. Gnedin; M. B. Vovchanskii. Iterated logarithm law for sizes of clusters in Arratia flow. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 1-7. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/