Iterated logarithm law for sizes of clusters in Arratia flow
Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 1-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of sizes of clusters for the Arratia flow is considered, the Arratia flow being a system of coalescing Wiener processes starting from the real axis and independent before they meet. A cluster at time $t$ is defined as a set of particles that have glued together not later than at $t.$ The results obtained are remarked to hold for any Arratia flow with a Lipschitz drift.
Keywords: Arratia flow, cluster, Brownian motion, Gaussian processes, concentration of measure.
@article{THSP_2012_18_2_a0,
     author = {A. A. Dorogovtsev and A. V. Gnedin and M. B. Vovchanskii},
     title = {Iterated logarithm law for sizes of clusters in {Arratia} flow},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/}
}
TY  - JOUR
AU  - A. A. Dorogovtsev
AU  - A. V. Gnedin
AU  - M. B. Vovchanskii
TI  - Iterated logarithm law for sizes of clusters in Arratia flow
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 1
EP  - 7
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/
LA  - en
ID  - THSP_2012_18_2_a0
ER  - 
%0 Journal Article
%A A. A. Dorogovtsev
%A A. V. Gnedin
%A M. B. Vovchanskii
%T Iterated logarithm law for sizes of clusters in Arratia flow
%J Teoriâ slučajnyh processov
%D 2012
%P 1-7
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/
%G en
%F THSP_2012_18_2_a0
A. A. Dorogovtsev; A. V. Gnedin; M. B. Vovchanskii. Iterated logarithm law for sizes of clusters in Arratia flow. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 1-7. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a0/

[1] R. A. Arratia, Coalescing Brownian Motions on the Line, Thesis (Ph.D.), Univ. of Wisconsin, Madison, 1979 | MR

[2] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Mathematics of the NAS of Ukraine, Kyiv, 2007 (in Russian) | MR | Zbl

[3] R. W. R. Darling, “Rate of growth of the coalescent set in a coalescing stochastic flow”, Stochastics, 23:4 (1988), 465–508 | DOI | MR | Zbl

[4] A. Shamov, “Short-time asymptotics of one-dimensional Harris flows”, Commun. Stoch. Anal., 5:3 (2011), 527–539 | MR | Zbl

[5] T. E. Harris, “Coalescing and noncoalescing stochastic flows in $R^1$”, Stoch. Process. Appl., 17:2 (1984), 187–210 | DOI | MR | Zbl

[6] J. Warren, S. Watanabe, “On spectra of noises associated with Harris flows”, Stochastic Analysis and Related Topics in Kyoto, Adv. Stud. Pure Math., 41, Math. Soc. of Japan, Tokyo, 2004, 351–373 | MR | Zbl

[7] M. A. Lifshits, Gaussian Random Functions, Kluwer, Dordrecht, 1995 | MR | Zbl

[8] M. Ledoux, “Concentration of measure and logarithmic Sobolev inequalities”, Seminaire de Probabilites {XXXIII}, Lecture Notes in Math., 1709, Springer, Berlin, 1999, 120–216 | DOI | MR | Zbl

[9] A. A. Dorogovtsev, “Some remarks on a Wiener flow with coalescence”, Ukr. Math. J., 57:10 (2005), 1550–1558 | DOI | MR | Zbl