Mots-clés : Lévy driven SDE
@article{THSP_2012_18_1_a4,
author = {T. I. Kosenkova},
title = {Weak convergence of a series scheme of {Markov} chains to the solution of a {L\'evy} driven {SDE}},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {86--100},
year = {2012},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a4/}
}
T. I. Kosenkova. Weak convergence of a series scheme of Markov chains to the solution of a Lévy driven SDE. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 86-100. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a4/
[1] I. I. Gikhman, A. V. Skorokhod, Introduction to the Theory of Stochastic Processes, Dover, New York, 1996 | MR
[2] B. V. Gnedenko, A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge, MA, 1954 | MR | Zbl
[3] I. I. Gikhman, A. V. Skorokhod, Stochastic Diffential Equations and Their Applications, Springer, Berlin, 1972
[4] V. S. Koroliuk, N. Limnios, I. V. Samoilenko, “Lévy approximation of impulsive recurrent process with semi-Markov switching”, Theory of Probability and Mathematical Statistics, 2009, no. 80, 85–92 | MR
[5] R. F. Bass, “Uniqueness in law for pure jump Markov processes”, Probab. Th. Rel. Fields, 1988, no. 79, 271–287 | DOI | MR | Zbl
[6] S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986 | MR | Zbl