@article{THSP_2012_18_1_a3,
author = {S. Hiraba},
title = {Independent infinite {Markov} particle systems with jumps},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {65--85},
year = {2012},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a3/}
}
S. Hiraba. Independent infinite Markov particle systems with jumps. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 65-85. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a3/
[1] D. A. Dawson, “Measure-Valued Markov Processes”, Ecole d'Eté de Probabilitës de Saint-Flour XXI - 1991, Lecture Notes Math., 1541, ed. P. L. Hennequin, Springer, Berlin, 1993, 1–260 | DOI | MR | Zbl
[2] S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986 | MR | Zbl
[3] S. Hiraba, “Infinite Markov particle systems with singular immigration; Martingale problems and limit theorems”, Osaka J. Math., 33 (1996), 145–187 | MR | Zbl
[4] S. Hiraba, “Asymptotic behavior of hitting rates for absorbing stable motions in a half space”, Osaka J. Math., 34 (1997), 905–921 | MR | Zbl
[5] I. Iscoe, “A weighted occupation time for a class of measure-valued branching processes”, Probab. Th. Rel. Fields, 71 (1986), 85–116 | DOI | MR | Zbl
[6] R. Sh. Liptser, A. N. Shiryayev, Theory of Martingales, Kluwer, Dordrecht, 1989 | MR | Zbl