Independent infinite Markov particle systems with jumps
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 65-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate independent infinite Markov particle systems (IIMPSs) as measure-valued Markov processes with jumps. We shall give sample path properties and martingale characterizations. In particular, we investigate the Hölder right continuity exponent in the case where each particle participates in the absorbing $\alpha$-stable motion on $(0,\infty)$ with $0\alpha2$, that is, the time-changed absorbing Brownian motion on $(0,\infty)$ by the increasing $\alpha/2$-stable Lévy processes.
Keywords: Particle systems, measure-valued processes, jump processes.
@article{THSP_2012_18_1_a3,
     author = {S. Hiraba},
     title = {Independent infinite {Markov} particle systems with jumps},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {65--85},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a3/}
}
TY  - JOUR
AU  - S. Hiraba
TI  - Independent infinite Markov particle systems with jumps
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 65
EP  - 85
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a3/
LA  - en
ID  - THSP_2012_18_1_a3
ER  - 
%0 Journal Article
%A S. Hiraba
%T Independent infinite Markov particle systems with jumps
%J Teoriâ slučajnyh processov
%D 2012
%P 65-85
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a3/
%G en
%F THSP_2012_18_1_a3
S. Hiraba. Independent infinite Markov particle systems with jumps. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 65-85. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a3/

[1] D. A. Dawson, “Measure-Valued Markov Processes”, Ecole d'Eté de Probabilitës de Saint-Flour XXI - 1991, Lecture Notes Math., 1541, ed. P. L. Hennequin, Springer, Berlin, 1993, 1–260 | DOI | MR | Zbl

[2] S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986 | MR | Zbl

[3] S. Hiraba, “Infinite Markov particle systems with singular immigration; Martingale problems and limit theorems”, Osaka J. Math., 33 (1996), 145–187 | MR | Zbl

[4] S. Hiraba, “Asymptotic behavior of hitting rates for absorbing stable motions in a half space”, Osaka J. Math., 34 (1997), 905–921 | MR | Zbl

[5] I. Iscoe, “A weighted occupation time for a class of measure-valued branching processes”, Probab. Th. Rel. Fields, 71 (1986), 85–116 | DOI | MR | Zbl

[6] R. Sh. Liptser, A. N. Shiryayev, Theory of Martingales, Kluwer, Dordrecht, 1989 | MR | Zbl