Mots-clés : Poincaré inequality
@article{THSP_2011_17_2_a5,
author = {Alexey M. Kulik},
title = {Poincar\'e inequality and exponential integrability of the hitting times of a {Markov} process},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {71--80},
year = {2011},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a5/}
}
Alexey M. Kulik. Poincaré inequality and exponential integrability of the hitting times of a Markov process. Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 71-80. http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a5/
[1] F. Aldous, J. Fill, Reversible Markov chains and random walks on graphs, http://www.stat.berkeley.edu/users/aldous/RWG/book.html
[2] D. Bakry, P. Cattiaux, A. Guillin, “Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré”, J. Func. Anal., 254 (2008), 727 – 759
[3] E. B. Dynkin, A. A. Yushkevich, Markov processes: theorems and problems, Plenum Press, 1969
[4] P. Cattiaux, A. Guillin, F-Y. Wang, L. Wu, “Lyapunov conditions for super Poincaré inequalities”, J. Funct. Anal., 256:6 (2009), 1821–1841
[5] P. Cattiaux, A. Guillin, P.-A. Zitt, Poincaré inequalities and hitting times, 2010, arXiv: 1012.5274v1
[6] A. M. Il’in, A. S. Kalashnikov, O. A. Oleinik, “Linear second order parabolic equations”, Uspekhi Mat. Nauk, 17:3 (1962), 3–-143
[7] N. V. Krylov, M. V. Safonov, “A certain property of solutions of parabolic equations with measurable coefficients”, Math. USSR Izvestija, 16 (1981), 151–164
[8] A. M. Kulik, “Asymptotic and spectral properties of exponentially $\phi$-ergodic Markov processes”, Stochastic Processes and Applications, 121 (2011), 1044–1075
[9] D. Loukianova, O. Loukianov, Sh. Song, Poincaré inequality and exponential integrability of hitting times for linear diffusions, 2009, arXiv: 0907.0762v1
[10] Z.-M. Ma, M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Springer-Verlag, London, Ltd., 1992
[11] P. Mathieu, “Hitting times and spectral gap inequalities”, Ann. Inst. Henri Poincaré, 33:4 (1997), 437–465
[12] W. Rudin, Functional Analysis, McGraw-Hill, New-York, 1973