On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition
Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 55-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the method of classical potential theory, we obtain an integral representation for the two-parameter semigroup of operators that describes the inhomogeneous Feller process on a line being a result of pasting together two diffusion processes with the general Feller–Wentzell conjugation condition.
Keywords: Feller semigroup, conjugation condition of Feller–Wentzell.
Mots-clés : diffusion process
@article{THSP_2011_17_2_a4,
     author = {B. I. Kopytko and R. V. Shevchuk},
     title = {On pasting together two inhomogeneous diffusion processes on a line with the general {Feller-Wentzell} conjugation condition},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {55--70},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a4/}
}
TY  - JOUR
AU  - B. I. Kopytko
AU  - R. V. Shevchuk
TI  - On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 55
EP  - 70
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a4/
LA  - en
ID  - THSP_2011_17_2_a4
ER  - 
%0 Journal Article
%A B. I. Kopytko
%A R. V. Shevchuk
%T On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition
%J Teoriâ slučajnyh processov
%D 2011
%P 55-70
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a4/
%G en
%F THSP_2011_17_2_a4
B. I. Kopytko; R. V. Shevchuk. On pasting together two inhomogeneous diffusion processes on a line with the general Feller-Wentzell conjugation condition. Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 55-70. http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a4/

[1] H. Langer, W. Schenk, “Knotting of one-dimentional Feller process”, Math. Nachr., 113 (1983), 151–-161

[2] W. Feller, “Diffusion processes in one dimension”, Trans. Amer. Math. Soc., 77 (1954), 1–31

[3] A. D. Wentzell, “Semigroups of operators that correspond to a generalized differential operator of second order”, Dokl. AN SSSR, 111:2 (1956), 269–272

[4] M. I. Portenko, Diffusion Processes in Media with Membranes, Institute of Mathematics of the NAS of Ukraine, Kyiv, 1995 (in Ukrainian)

[5] B. I. Kopytko, “On the knotting of two inhomogeneous diffusion processes on a line”, Ukr. Math. Journal, 35:2 (1983), 156–163

[6] E. B. Dynkin, Markov Processes, Fizmatgiz, Moscow, 1963 (in Russian)

[7] P. P. Kononchuk, “Operator semigroups that describe Feller process on a line pasted from two diffusion processes”, Teor. Imovir. ta Matem. Statyst., 84 (2011), 86–-96 (in Ukrainian)

[8] P. P. Kononchuk, “One-dimensional model of the diffusion process with a membrane that is described by the Feller-Wentzel conjugation condition”, Theory of Stochastic Processes, 17(33):1 (2011), 61–69

[9] Teor. Verojatnost. i Primenen., 12:3 (1967), 548–551

[10] S. V. Anulova, “On stochastic differential equations with boundary conditions in a half-plane”, Izv. AN SSSR Ser. Mat., 45:3 (1981), 491–-508

[11] A. Yu. Pilipenko, “On the Skorokhod mapping for equations with reflection and possible jump-like exit from a boundary”, Ukr. Math. Journal, 63:9 (2011), 1241–1256

[12] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian)

[13] A. Friedman, Partial differential equations of parabolic type, Mir, Moscow, 1968 (in Russian)