Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_2_a2, author = {Andrii B. Ilienko and Josef G. Steinebach}, title = {Stochastically {Lipschitzian} functions and limit theorems for functionals of shot noise processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {25--34}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/} }
TY - JOUR AU - Andrii B. Ilienko AU - Josef G. Steinebach TI - Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes JO - Teoriâ slučajnyh processov PY - 2011 SP - 25 EP - 34 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/ LA - en ID - THSP_2011_17_2_a2 ER -
%0 Journal Article %A Andrii B. Ilienko %A Josef G. Steinebach %T Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes %J Teoriâ slučajnyh processov %D 2011 %P 25-34 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/ %G en %F THSP_2011_17_2_a2
Andrii B. Ilienko; Josef G. Steinebach. Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes. Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 25-34. http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/
[1] V. V. Buldygin, Yu. V. Kozachenko, Metric characterization of random variables and random processes, Translations of Mathematical Monographs, 188, American Mathematical Society, Providence, RI, 2000
[2] A. V. Bulinskii, S. A. Molchanov, “Asymptotic Gaussian property of the solution of the Burgers equation with random initial data”, Theory Probab. Appl., 36:2 (1991), 217–236
[3] T.-L. Cheng, H.-C. Ho, “Asymptotic normality for non-linear functionals of non-causal linear processes with summable weights”, J. Theoret. Probab., 18:2 (2005), 345–358
[4] P. H. Diananda, “Some probability limit theorems with statistical applications”, Proc. Cambridge Philos. Soc., 49 (1953), 239–246
[5] L. Giraitis, “The central limit theorem for functionals of a linear process”, Lithuanian Math. J., 25:1 (1985), 25–35
[6] L. Giraitis, D. Surgailis, “A limit theorem for polynomials of a linear process with long-range dependence”, Lithuanian Math. J., 29:2 (1989), 128–145
[7] L. Giraitis, S. A. Molchanov, D. Surgailis, “Long memory shot noises and limit theorems with application to Burgers' equation”, New directions in time series analysis, Part II, IMA Vol. Math. Appl., 46, Springer, New York, 1993,, 153–176
[8] H.-C. Ho, T. Hsing, “Limit theorems for functionals of moving averages”, Ann. Probab., 25:4 (1997), 1636–1669
[9] O. Kallenberg, Foundations of modern probability, Probability and its Applications, 2nd, Springer, New York, 2002
[10] A. N. Shiryaev, Probability, Graduate Texts in Mathematics, 95, 2nd, Springer, New York, 1996