Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes
Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 25-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\theta$ be a short memory shot noise process. For wide classes of “stochastically Lipschitzian” (SL) and “stochastically locally Lipschitzian” (SLL) non-linear functions $K\colon{\mathbb R}\to{\mathbb R}$, we prove asymptotic normality of the normalized integrals $\Theta_K(T)=\int_0^TK(\theta(t))\,dt$ as $T\to\infty$. We also consider various examples of SL and SLL functions.
Keywords: Shot noise process, non-linear function, integrated process, central limit theorem.
@article{THSP_2011_17_2_a2,
     author = {Andrii B. Ilienko and Josef G. Steinebach},
     title = {Stochastically {Lipschitzian} functions and limit theorems for functionals of shot noise processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/}
}
TY  - JOUR
AU  - Andrii B. Ilienko
AU  - Josef G. Steinebach
TI  - Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 25
EP  - 34
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/
LA  - en
ID  - THSP_2011_17_2_a2
ER  - 
%0 Journal Article
%A Andrii B. Ilienko
%A Josef G. Steinebach
%T Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes
%J Teoriâ slučajnyh processov
%D 2011
%P 25-34
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/
%G en
%F THSP_2011_17_2_a2
Andrii B. Ilienko; Josef G. Steinebach. Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes. Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 25-34. http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a2/

[1] V. V. Buldygin, Yu. V. Kozachenko, Metric characterization of random variables and random processes, Translations of Mathematical Monographs, 188, American Mathematical Society, Providence, RI, 2000

[2] A. V. Bulinskii, S. A. Molchanov, “Asymptotic Gaussian property of the solution of the Burgers equation with random initial data”, Theory Probab. Appl., 36:2 (1991), 217–236

[3] T.-L. Cheng, H.-C. Ho, “Asymptotic normality for non-linear functionals of non-causal linear processes with summable weights”, J. Theoret. Probab., 18:2 (2005), 345–358

[4] P. H. Diananda, “Some probability limit theorems with statistical applications”, Proc. Cambridge Philos. Soc., 49 (1953), 239–246

[5] L. Giraitis, “The central limit theorem for functionals of a linear process”, Lithuanian Math. J., 25:1 (1985), 25–35

[6] L. Giraitis, D. Surgailis, “A limit theorem for polynomials of a linear process with long-range dependence”, Lithuanian Math. J., 29:2 (1989), 128–145

[7] L. Giraitis, S. A. Molchanov, D. Surgailis, “Long memory shot noises and limit theorems with application to Burgers' equation”, New directions in time series analysis, Part II, IMA Vol. Math. Appl., 46, Springer, New York, 1993,, 153–176

[8] H.-C. Ho, T. Hsing, “Limit theorems for functionals of moving averages”, Ann. Probab., 25:4 (1997), 1636–1669

[9] O. Kallenberg, Foundations of modern probability, Probability and its Applications, 2nd, Springer, New York, 2002

[10] A. N. Shiryaev, Probability, Graduate Texts in Mathematics, 95, 2nd, Springer, New York, 1996