The distribution of random evolution in Erlang semi-Markov media
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 90-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a one-dimensional random motion by using a general Erlang distribution for the sojourn times of a switching process and obtain the solution of a four-order hyperbolic PDE in the 2-Erlang case.
Keywords: Random motion, Erlang distribution, differentiable functions on commutative algebras, biwave equation.
@article{THSP_2011_17_1_a9,
     author = {A. Pogorui},
     title = {The distribution of random evolution in {Erlang} {semi-Markov} media},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {90--99},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a9/}
}
TY  - JOUR
AU  - A. Pogorui
TI  - The distribution of random evolution in Erlang semi-Markov media
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 90
EP  - 99
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a9/
LA  - en
ID  - THSP_2011_17_1_a9
ER  - 
%0 Journal Article
%A A. Pogorui
%T The distribution of random evolution in Erlang semi-Markov media
%J Teoriâ slučajnyh processov
%D 2011
%P 90-99
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a9/
%G en
%F THSP_2011_17_1_a9
A. Pogorui. The distribution of random evolution in Erlang semi-Markov media. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 90-99. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a9/

[1] A. A. Pogorui, “Monogenic functions on commutative algebras”, Complex Variables and Elliptic Equations, 52:12 (2007), 1155–1159

[2] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1995

[3] Tables of Integral Transforms, ed. A. Erdélyi, McGraw-Hill, New York, 1954

[4] M. A. Pinsky, Lectures on Random Evolution, World Scientific, Singapore, 1991