Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a7, author = {I. I. Nishchenko}, title = {Discrete time approximation of coalescing stochastic flows on the real line}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {70--78}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a7/} }
I. I. Nishchenko. Discrete time approximation of coalescing stochastic flows on the real line. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 70-78. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a7/
[1] D. F. Kuznetsov, Stochastic Differential Equations: Theory and Practice of Numerical Analysis, Polytechnic Univ., Saint-Petersburg, 2010 (in Russian)
[2] B. Tsirelson, “Nonclassical stochastic flows and continuous products”, Probab. Surv., 1 (2004), 173–298
[3] T. E. Harris, “Coalescing and noncoalescing stochastic flows in ${\mathbb R}_1$”, Stoch. Process. and Their Applic., 17 (1984), 187–210
[4] O. Kallenberg, Foundations of Modern Probability, Springer, New York, 1997
[5] Y. Le Jan, O. Raimond, “Flows, coalescence and noise”, Ann. Probab., 32 (2004), 1247–1315
[6] P. Kotelenez, “A class of quasilinear stochastic partial differential equation of McKean–Vlasov type with mass conservation”, Probab. Th. Relat. Fields, 102 (1995), 159–188
[7] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Math., Kiev, 2007 (in Russian)
[8] A. A. Dorogovtsev, “One Brownian stochastic flow”, Th. Stoch. Proc., 10 (2004), 21–25
[9] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968
[10] A. A. Dorogovtsev, O. V. Ostapenko, “Large deviations for flows of interacting Brownian motions”, Stochastics and Dynamics, 10:3 (2010), 315–339