Discrete analogue of the Krylov--Veretennikov expansion
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 39-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a difference analogue of the stochastic flow with interaction in ${\mathbb R}.$ The discrete-time flow is given by a difference equation with random perturbation which is defined by a sequence of stationary Gaussian processes. We obtain the Itô–Wiener expansion for a solution to the stochastic difference equation which can be regarded as a discrete analogue of the Krylov–Veretennikov representation for a solution to the stochastic differential equation.
Keywords: Random interaction systems, discrete-time flow, Itô–Wiener series expansion.
@article{THSP_2011_17_1_a4,
     author = {Glinyanaya E. V.},
     title = {Discrete analogue of the {Krylov--Veretennikov} expansion},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a4/}
}
TY  - JOUR
AU  - Glinyanaya E. V.
TI  - Discrete analogue of the Krylov--Veretennikov expansion
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 39
EP  - 49
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a4/
LA  - en
ID  - THSP_2011_17_1_a4
ER  - 
%0 Journal Article
%A Glinyanaya E. V.
%T Discrete analogue of the Krylov--Veretennikov expansion
%J Teoriâ slučajnyh processov
%D 2011
%P 39-49
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a4/
%G en
%F THSP_2011_17_1_a4
Glinyanaya E. V. Discrete analogue of the Krylov--Veretennikov expansion. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a4/

[1] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York, 2001

[2] Y. Le Jan, “Èquilibre statistique pour les produits de diffèomorphismes alèatoires indèpendents”, Ann. Inst. Henri Poincaré, 23:1 (1987), 111–120

[3] K. B. Athreya, Iteration of IID Random Maps on ${\mathbb R}^+$, IMS Lecture Notes Monogr. Ser., 41, Inst. Math. Statist., Beachwood, OH, 2003

[4] R. Bhattacharya, M. Majumdar, Random Dynamical Systems: Theory and Applications, Cambridge Univ. Press, Cambridge, 2007

[5] J. A. D. Appleby, G. Berkolaiko, A. Rodkina, Non-exponential stability and decay rates in nonlinear stochastic difference equation with unbounded noises, arXiv: math/0610425v2

[6] A. Yu. Veretennikov, N. V. Krylov, “Explicit formulas of the solutions of stochastic equations”, Mat. Sb., 100(142):2(6) (1976), 266–284

[7] T. E. Harris, “Coalescing and noncoalescing stochastic flows in ${\mathbb R}$”, Stoch. Proc. and Appl., 17 (1984), 187–210

[8] A. V. Skorohod, “On a generalization of the stochastic integral”, Teor. Veroyatn. Primenen., 20:2 (1975), 223–238 (in Russian)

[9] D. Nualart, The Malliavin Calculus and Related Topics, Springer, New York, 1995

[10] A. A. Dorogovtsev, Stochastic Analysis and Random Maps in Hilbert space, VSP, Utrecht–Tokyo, 1994

[11] S. Janson, Gaussian Hilbert spaces, Cambridge University Press, Cambridge, 1997