Discrete analogue of the Krylov--Veretennikov expansion
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 39-49
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a difference analogue of the stochastic flow with interaction in ${\mathbb R}.$ The discrete-time flow is given by a difference equation with random perturbation which is defined by a sequence of stationary Gaussian processes. We obtain the Itô–Wiener expansion for a solution to the stochastic difference equation which can be regarded as a discrete analogue of the Krylov–Veretennikov representation for a solution to the stochastic differential equation.
Keywords:
Random interaction systems, discrete-time flow, Itô–Wiener series expansion.
@article{THSP_2011_17_1_a4,
author = {Glinyanaya E. V.},
title = {Discrete analogue of the {Krylov--Veretennikov} expansion},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {39--49},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a4/}
}
Glinyanaya E. V. Discrete analogue of the Krylov--Veretennikov expansion. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a4/