Finite absolute continuity on an abstract Wiener space
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 100-108

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite absolute continuity of probability measures on an abstract Wiener space $(X, H, \mu)$ with respect to a Gaussian measure $\mu$ is studied. The limit theorem for the tails of such measures is proved.
Keywords: Finite absolute continuity, Itô–Wiener expansion, Gaussian measure, capacity, slim set, weak convergence.
@article{THSP_2011_17_1_a10,
     author = {G. V. Ryabov},
     title = {Finite absolute continuity on an abstract {Wiener} space},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/}
}
TY  - JOUR
AU  - G. V. Ryabov
TI  - Finite absolute continuity on an abstract Wiener space
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 100
EP  - 108
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/
LA  - en
ID  - THSP_2011_17_1_a10
ER  - 
%0 Journal Article
%A G. V. Ryabov
%T Finite absolute continuity on an abstract Wiener space
%J Teoriâ slučajnyh processov
%D 2011
%P 100-108
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/
%G en
%F THSP_2011_17_1_a10
G. V. Ryabov. Finite absolute continuity on an abstract Wiener space. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/