Finite absolute continuity on an abstract Wiener space
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 100-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite absolute continuity of probability measures on an abstract Wiener space $(X, H, \mu)$ with respect to a Gaussian measure $\mu$ is studied. The limit theorem for the tails of such measures is proved.
Keywords: Finite absolute continuity, Itô–Wiener expansion, Gaussian measure, capacity, slim set, weak convergence.
@article{THSP_2011_17_1_a10,
     author = {G. V. Ryabov},
     title = {Finite absolute continuity on an abstract {Wiener} space},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/}
}
TY  - JOUR
AU  - G. V. Ryabov
TI  - Finite absolute continuity on an abstract Wiener space
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 100
EP  - 108
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/
LA  - en
ID  - THSP_2011_17_1_a10
ER  - 
%0 Journal Article
%A G. V. Ryabov
%T Finite absolute continuity on an abstract Wiener space
%J Teoriâ slučajnyh processov
%D 2011
%P 100-108
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/
%G en
%F THSP_2011_17_1_a10
G. V. Ryabov. Finite absolute continuity on an abstract Wiener space. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/

[1] A. A. Dorogovtsev, “Measurable functionals and finitely absolutely continuous measures on Banach spaces”, Ukr. Math. J., 52:9 (2000), 1366–1379

[2] H. Sugita, “Positive generalized Wiener functions and potential theory over abstract Wiener space”, Osaka J. Math., 25:3 (1988), 665–696

[3] G. V. Riabov, “Finite absolute continuity of Gaussian measures on infinite-dimensional spaces”, Ukr. Math. J., 60:10 (2008), 1367–1377

[4] G. V. Riabov, “On finite absolute continuity of measures related to Wiener measure”, Inf. Dim. An. and Quant. Pr., 12:2 (2009), 341–352

[5] V. I. Bogachev, Gaussian Measures, Nauka, Moscow, 1997 (in Russian)

[6] M. Takeda, “$(r,p)$-capacity on the Wiener space and properties of Brownian motion”, Z. Wahrsch. Verw. Gebiete, 68:2 (1984), 149–162

[7] M. Fukushima, “Basic properties of Brownian motion and a capacity on the Wiener space”, J. Math. Soc. Japan, 36:1 (1984), 161–176

[8] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1999

[9] S. Fang, “Sur un résultat d'entropie de l'espace de Wiener”, C. R. Acad. Sci. Paris. Sér I, 312, 1991, 995–998

[10] H. Rootzen, “Fluctuations of sequences which converge in distribution”, Ann. Probab., 4:3 (1976), 456–463