Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a10, author = {G. V. Ryabov}, title = {Finite absolute continuity on an abstract {Wiener} space}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {100--108}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/} }
G. V. Ryabov. Finite absolute continuity on an abstract Wiener space. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a10/
[1] A. A. Dorogovtsev, “Measurable functionals and finitely absolutely continuous measures on Banach spaces”, Ukr. Math. J., 52:9 (2000), 1366–1379
[2] H. Sugita, “Positive generalized Wiener functions and potential theory over abstract Wiener space”, Osaka J. Math., 25:3 (1988), 665–696
[3] G. V. Riabov, “Finite absolute continuity of Gaussian measures on infinite-dimensional spaces”, Ukr. Math. J., 60:10 (2008), 1367–1377
[4] G. V. Riabov, “On finite absolute continuity of measures related to Wiener measure”, Inf. Dim. An. and Quant. Pr., 12:2 (2009), 341–352
[5] V. I. Bogachev, Gaussian Measures, Nauka, Moscow, 1997 (in Russian)
[6] M. Takeda, “$(r,p)$-capacity on the Wiener space and properties of Brownian motion”, Z. Wahrsch. Verw. Gebiete, 68:2 (1984), 149–162
[7] M. Fukushima, “Basic properties of Brownian motion and a capacity on the Wiener space”, J. Math. Soc. Japan, 36:1 (1984), 161–176
[8] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1999
[9] S. Fang, “Sur un résultat d'entropie de l'espace de Wiener”, C. R. Acad. Sci. Paris. Sér I, 312, 1991, 995–998
[10] H. Rootzen, “Fluctuations of sequences which converge in distribution”, Ann. Probab., 4:3 (1976), 456–463