Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a1, author = {Jaya P. N. Bishwal}, title = {Sufficiency and {Rao-Blackwellization} of {Vasicek} {Model}}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {12--15}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a1/} }
Jaya P. N. Bishwal. Sufficiency and Rao-Blackwellization of Vasicek Model. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 12-15. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a1/
[1] M. Arató, “Estimation of the parameters of a stationary Gaussian Markov process”, Soviet Math. Dokladi, 162 (1962), 905–909
[2] M. Arató, “Linear Stochastic Systems with Constant Coefficients: A Statistical Approach”, Lecture Notes in Control and Information Sciences, 45, Springer, New York, 1982
[3] M. Arató, S. Fefyverneki, “New statistical investigations of the Ornstein-Uhlenbeck process”, Comput. Math. Appl., 44 (2002), 677–692
[4] J. P. N. Bishwal, Parameter Estimation in Stochastic Differential Equations, Springer-Verlag, 2008
[5] A. Novikov, “Sequential estimation of the parameters of diffusion type processes”, Mathematical Notes, 12 (1972), 812–818
[6] M. M. Rao, “Asymptotic distribution of an estimator of the boundary parameter of an unstable process”, Ann. Statist., 6 (1978), 185–190
[7] Y. M. Ryzhov, “Estimation of the mean and the correlation function of a stationary process from discrete data”, Theory. Probab. Appl., 16 (1971), 367–369
[8] Y. M. Ryzov, “Letter to the editor”, Theory. Probab. Appl., 17:1 193. (1972)
[9] S. Y. Vilenkin, “On the estimation of the mean in stationary processes”, Theory. Probab. Appl., 4 (1959), 415–416
[10] A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions, v. I, II, Springer, New York, 1987