Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a0, author = {S. Aliyev and F. Rahimov and M. Navidi}, title = {On asymptotic behaviour of conditional probability of crossing the nonlinear boundary by a perturbed random walk}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {5--11}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a0/} }
TY - JOUR AU - S. Aliyev AU - F. Rahimov AU - M. Navidi TI - On asymptotic behaviour of conditional probability of crossing the nonlinear boundary by a perturbed random walk JO - Teoriâ slučajnyh processov PY - 2011 SP - 5 EP - 11 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a0/ LA - en ID - THSP_2011_17_1_a0 ER -
%0 Journal Article %A S. Aliyev %A F. Rahimov %A M. Navidi %T On asymptotic behaviour of conditional probability of crossing the nonlinear boundary by a perturbed random walk %J Teoriâ slučajnyh processov %D 2011 %P 5-11 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a0/ %G en %F THSP_2011_17_1_a0
S. Aliyev; F. Rahimov; M. Navidi. On asymptotic behaviour of conditional probability of crossing the nonlinear boundary by a perturbed random walk. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a0/
[1] S. Aliyev, T. Hashimova, “Asymptotic behavior of the conditional probability of crossing the nonlinear boundary by a random walk”, Theory of Stoch. Process., 16 (32):1 (2010), 12–17
[2] F. Rahimov, “On the limit behavior of conditional probabilities of crossing the nonlinear boundary by perturbed random walk”, Trans. of the NAS of Azerbaijan, 2006, no. 1, 163–168
[3] F. Rahimov, “On the local probabilities of crossing the nonlinear boundaries by the sums of independent random variables”, Teoria Veroyatn. Primen., 35 (1990), 373–377
[4] F. Rahimov, “Integral limit theorems for first time of crossing the nonlinear boundary by the sums of independent random variables”, Teoria Veroyatn. Primen., 50 (2005), 158–161
[5] A. Gut, Stopped Random Walks: Limit Theorems and Applications, Springer, New York, 2009
[6] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1970
[7] D. Siegmund, Sequential Analysis. Tests and Confidence Intervals, Springer, New York, 1985
[8] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982
[9] C.-H. Zhang, “A nonlinear renewal theory”, Ann. Probab., 16:2 (1988), 793–821