L\'{e}vy approximation of impulsive recurrent process with semi-Markov switching
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The weak convergence of an impulsive recurrent process with semi-Markov switching in the scheme of the Lévy approximation is proved. The singular perturbation problem for the compensating operator of an extended Markov renewal process is used to prove the relative compactness.
Keywords: Lévy approximation, semimartingale, semi-Markov process, impulsive recurrent process, piecewise deterministic Markov process, weak convergence
Mots-clés : singular perturbation.
@article{THSP_2010_16_2_a8,
     author = {V. S. Korolyuk and N. Limnios and I. V. Samoilenko},
     title = {L\'{e}vy approximation of impulsive recurrent process with {semi-Markov} switching},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a8/}
}
TY  - JOUR
AU  - V. S. Korolyuk
AU  - N. Limnios
AU  - I. V. Samoilenko
TI  - L\'{e}vy approximation of impulsive recurrent process with semi-Markov switching
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 77
EP  - 85
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a8/
LA  - en
ID  - THSP_2010_16_2_a8
ER  - 
%0 Journal Article
%A V. S. Korolyuk
%A N. Limnios
%A I. V. Samoilenko
%T L\'{e}vy approximation of impulsive recurrent process with semi-Markov switching
%J Teoriâ slučajnyh processov
%D 2010
%P 77-85
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a8/
%G en
%F THSP_2010_16_2_a8
V. S. Korolyuk; N. Limnios; I. V. Samoilenko. L\'{e}vy approximation of impulsive recurrent process with semi-Markov switching. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 77-85. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a8/

[1] J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996

[2] S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986

[3] I. I. Gikhman, A. V. Skorohod, Theory of Stochastic Processes, v. 1,2,3, Springer, Berlin, 1974

[4] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin, 1987

[5] V. S. Koroliuk, N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, Singapore, 2005

[6] V. S. Koroliuk, N. Limnios, I. V. Samoilenko, “Poisson approximation of processes with locally independent increments with Markov switching”, Theory of Stoch. Proc., 15(31):1 (2009), 40–48

[7] R. Sh. Liptser, “The Bogolyubov averaging principle for semimartingales”, Proceedings of the Steklov Institute of Mathematics, 4, Moscow, 1994

[8] R. Sh. Liptser, A. N. Shiryayev, Theory of Martingales, Kluwer, Dordrecht, 1998

[9] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, Cambridge, 1999

[10] M. N. Sviridenko, “Martingale characterization of limit distributions in the space of functions without discontinuities of second kind”, Math. Notes, 43:5 (1998), 398–402