On a diffusion process on a half-line with Feller--Wentzel boundary condition that corresponds to reflection and jumps
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator semigroup that describes a diffusion process on a half-line such that its behavior on a boundary is defined by the Feller–Wentzel boundary condition with the integral term is constructed using classical potential theory.
Keywords: potential theory.
Mots-clés : Diffusion process
@article{THSP_2010_16_2_a7,
     author = {P. P. Kononchuk and B. I. Kopytko},
     title = {On a diffusion process on a half-line with {Feller--Wentzel} boundary condition that corresponds to reflection and jumps},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {69--76},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a7/}
}
TY  - JOUR
AU  - P. P. Kononchuk
AU  - B. I. Kopytko
TI  - On a diffusion process on a half-line with Feller--Wentzel boundary condition that corresponds to reflection and jumps
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 69
EP  - 76
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a7/
LA  - en
ID  - THSP_2010_16_2_a7
ER  - 
%0 Journal Article
%A P. P. Kononchuk
%A B. I. Kopytko
%T On a diffusion process on a half-line with Feller--Wentzel boundary condition that corresponds to reflection and jumps
%J Teoriâ slučajnyh processov
%D 2010
%P 69-76
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a7/
%G en
%F THSP_2010_16_2_a7
P. P. Kononchuk; B. I. Kopytko. On a diffusion process on a half-line with Feller--Wentzel boundary condition that corresponds to reflection and jumps. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 69-76. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a7/

[1] E. B. Dynkin, Markov Processes, Plenum, New York, 1969

[2] M. I. Portenko, Diffusion Processes in Media with Semipermeable Membranes, Institute of Mathematics of the NAS of Ukraine, Kyiv, 1995 (in Ukrainian)

[3] W. Feller, “The parabolic differential equations and the associated semigroups of transformations”, Ann. Math., 55 (1952), 468–519

[4] A. D. Wentzel, “On boundary conditions for multidimensional diffusion process”, Probab. Theory Appl., 4:2 (1959), 172–185

[5] A. B. Dynkin, A. A. Yushkevich, Markov Processes – Theorems and Problems, Plenum, New York, 1969

[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968

[7] P. Kononchuk, B. Kopytko, “On semigroup of Feller operators that describes a diffusion process on a half-line with nonlocal boundary conditions”, Mat. Visn. Nauk. Tov. Im. Shevchenka, 4 (2007), 134–143

[8] A. L. Skubachevkyy, “On Feller's semigroups for multidimensional diffusion processes”, Doklady RAN, 341:2 (1995), 173–176

[9] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, 1964