New functional estimator in quadratic errors-in-variables model
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 126-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quadratic structural errors-in-variables model is considered. Functional estimators that are generated by estimating the functions conditionally unbiased given the latent variable are studied. Those estimators are constructed without the knowledge of the latent variable distribution. A problem is studied how to construct an estimator from the class which has the smallest, in certain sense, asymptotic covariance matrix.
Keywords: Asymptotic covariance matrix, efficient estimator, functional estimator, quadratic errors-in-variables model.
@article{THSP_2010_16_2_a12,
     author = {Elena Usoltseva and Alexander Kukush},
     title = {New functional estimator in quadratic errors-in-variables model},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {126--131},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a12/}
}
TY  - JOUR
AU  - Elena Usoltseva
AU  - Alexander Kukush
TI  - New functional estimator in quadratic errors-in-variables model
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 126
EP  - 131
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a12/
LA  - en
ID  - THSP_2010_16_2_a12
ER  - 
%0 Journal Article
%A Elena Usoltseva
%A Alexander Kukush
%T New functional estimator in quadratic errors-in-variables model
%J Teoriâ slučajnyh processov
%D 2010
%P 126-131
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a12/
%G en
%F THSP_2010_16_2_a12
Elena Usoltseva; Alexander Kukush. New functional estimator in quadratic errors-in-variables model. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 126-131. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a12/

[1] R. J. Carrol, D. Ruppert, L. A. Stefanski, C. M. Crainiceanu, Measurement Error in Nonlinear Models. A Modern Perspective, Chapman and Hall/CRC, London, 2006

[2] A. Kukush, A. Malenko, H. Schneeweiss, “Comparing the efficiency of estimates in specific errors-in-variables models under unknown nuisance parameters”, Theory of Stochastic Processes, 13(29):4 (2007), 69–81

[3] A. Kukush, A. Malenko, H. Schneeweiss, “Optimality of the quasi score estimator in mean-variance model with applications to measurement error models”, Journal of Statistical Planning and Inference, 139 (2009), 69–81

[4] S. Shklyar, H. Schneeweiss, A. Kukush, “Quasi Score is more efficient than CS in a polynomial measurement error model”, Metrika, 65 (2007), 275–295

[5] L. A. Stefanski, “Unbiased estimation of a nonlinear function of a normal mean with application to measurement error models”, Communications of Statististics–Theory and Methods, 18 (1989), 4335–4358

[6] E. Usoltseva, A. Kukush, “Optimality of CS estimator in nonlinear errors-in-variables model when non-intercept terms are small”, Journal of Numerical and Applied Mathematics, 1(96) (2008), 139–148