Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_1_a5, author = {Omar Glonti and Zaza Khechinashvili}, title = {Geometric {Gaussian} martingales with disorder}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {44--48}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/} }
Omar Glonti; Zaza Khechinashvili. Geometric Gaussian martingales with disorder. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 44-48. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/
[1] O. Glonti, L. Jamburia, Z. Khechinashvili, “The minimal entropy martingale measure in trinomial scheme with “disorder””, Bulletin of the Georgian Acad. of Sci., 170:3 (2004), 452–453
[2] O. Glonti, L. Jamburia, Z. Khechinashvili, “Trinomial scheme with “disorder”. The minimal entropy martingale measure”, AMIM, 9:2 (2004), 14–29
[3] A. N. Shiryaev, “On statistical models and optimal methods in problems of quickest detection”, Teor. Veroyatnost. Primen., 53:3 (2008), 417–436 (in Russian)
[4] A. N. Shiryaev, Essentials of Stochastic Finance. Facts, Models, Theory, World Scientific, Singapore, 1999
[5] S. Taylor, Modeling Financial Time Series, Wiley, New York, 1986
[6] O. Glonti, Z. Khechinashvili, “Martingale measure for the geometric Gaussian martingale with “disorder””, Proceedings of I. Vekua Institute of Applied Mathematics, 58 (2008), 102–109