Geometric Gaussian martingales with disorder
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 44-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the scheme of a geometric Gaussian martingale with "disorder" as a model of a stock price evolution and investigate the problem of finding a forecasting estimation optimal in mean square sense within this scheme.
Keywords: Geometric Gaussian martingale, disorder moment, optimal forecasting.
@article{THSP_2010_16_1_a5,
     author = {Omar Glonti and Zaza Khechinashvili},
     title = {Geometric {Gaussian} martingales with disorder},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {44--48},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/}
}
TY  - JOUR
AU  - Omar Glonti
AU  - Zaza Khechinashvili
TI  - Geometric Gaussian martingales with disorder
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 44
EP  - 48
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/
LA  - en
ID  - THSP_2010_16_1_a5
ER  - 
%0 Journal Article
%A Omar Glonti
%A Zaza Khechinashvili
%T Geometric Gaussian martingales with disorder
%J Teoriâ slučajnyh processov
%D 2010
%P 44-48
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/
%G en
%F THSP_2010_16_1_a5
Omar Glonti; Zaza Khechinashvili. Geometric Gaussian martingales with disorder. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 44-48. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/