Geometric Gaussian martingales with disorder
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 44-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the scheme of a geometric Gaussian martingale with "disorder" as a model of a stock price evolution and investigate the problem of finding a forecasting estimation optimal in mean square sense within this scheme.
Keywords: Geometric Gaussian martingale, disorder moment, optimal forecasting.
@article{THSP_2010_16_1_a5,
     author = {Omar Glonti and Zaza Khechinashvili},
     title = {Geometric {Gaussian} martingales with disorder},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {44--48},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/}
}
TY  - JOUR
AU  - Omar Glonti
AU  - Zaza Khechinashvili
TI  - Geometric Gaussian martingales with disorder
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 44
EP  - 48
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/
LA  - en
ID  - THSP_2010_16_1_a5
ER  - 
%0 Journal Article
%A Omar Glonti
%A Zaza Khechinashvili
%T Geometric Gaussian martingales with disorder
%J Teoriâ slučajnyh processov
%D 2010
%P 44-48
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/
%G en
%F THSP_2010_16_1_a5
Omar Glonti; Zaza Khechinashvili. Geometric Gaussian martingales with disorder. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 44-48. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a5/

[1] O. Glonti, L. Jamburia, Z. Khechinashvili, “The minimal entropy martingale measure in trinomial scheme with “disorder””, Bulletin of the Georgian Acad. of Sci., 170:3 (2004), 452–453

[2] O. Glonti, L. Jamburia, Z. Khechinashvili, “Trinomial scheme with “disorder”. The minimal entropy martingale measure”, AMIM, 9:2 (2004), 14–29

[3] A. N. Shiryaev, “On statistical models and optimal methods in problems of quickest detection”, Teor. Veroyatnost. Primen., 53:3 (2008), 417–436 (in Russian)

[4] A. N. Shiryaev, Essentials of Stochastic Finance. Facts, Models, Theory, World Scientific, Singapore, 1999

[5] S. Taylor, Modeling Financial Time Series, Wiley, New York, 1986

[6] O. Glonti, Z. Khechinashvili, “Martingale measure for the geometric Gaussian martingale with “disorder””, Proceedings of I. Vekua Institute of Applied Mathematics, 58 (2008), 102–109