On the convergence of series of autoregressive sequences in Banach spaces
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the almost sure convergence of a series of autoregressive sequences in separable Banach spaces are studied. As an application of the obtained results, the condition for the admissible shift of a zero-mean Gaussian Markov measure is considered.
Keywords: Autoregressive sequences, almost sure convergence of random series, summability theory, Gaussian Markov sequences, continuity and singularity of probabilistic measures.
@article{THSP_2010_16_1_a3,
     author = {Valerii V. Buldygin and Marina K. Runovska},
     title = {On the convergence of series of autoregressive sequences in {Banach} spaces},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a3/}
}
TY  - JOUR
AU  - Valerii V. Buldygin
AU  - Marina K. Runovska
TI  - On the convergence of series of autoregressive sequences in Banach spaces
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 29
EP  - 38
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a3/
LA  - en
ID  - THSP_2010_16_1_a3
ER  - 
%0 Journal Article
%A Valerii V. Buldygin
%A Marina K. Runovska
%T On the convergence of series of autoregressive sequences in Banach spaces
%J Teoriâ slučajnyh processov
%D 2010
%P 29-38
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a3/
%G en
%F THSP_2010_16_1_a3
Valerii V. Buldygin; Marina K. Runovska. On the convergence of series of autoregressive sequences in Banach spaces. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 29-38. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a3/

[1] V. V. Buldygin, M. K. Runovska, “The equivalence and singularity conditions of Gaussian Markov distributions”, Naukovi visti NTUU “KPI”, 2009, no. 1, 134–142

[2] V. V. Buldygin, M. K. Runovska, “On the convergence of series of autoregressive sequences”, Theory of Stochastic Processes, 15(31):1 (2009), 7–14

[3] V. V. Buldygin, S. A. Solntsev, Functional Methods in Problems of the Summation of Random Variables, Naukova Dumka, Kiev, 1989 (in Russian)

[4] V. V. Buldygin, S. A. Solntsev, Asymptotic Behavior of Linearly Transformed Sums of Random Variables, Kluwer, Dordrecht, 1997

[5] W. Feller, Introduction to Probability Theory and Its Applications, Wiley, New York, 1971

[6] Yu. M. Kabanov, R. Sh. Lipzer, A. N. Shiryaev “On the continuity and singularity of probabilistic measures”, Math. Sbornik, 104(146):2(10) (1977), 227–247

[7] V. V. Petrov, Sums of Independent Random Variables, Nauka, Moscow, 1972 (in Russian)