Mots-clés : stable distribution.
@article{THSP_2010_16_1_a1,
author = {S. A. Aliev and T. E. Hashimova},
title = {Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {12--16},
year = {2010},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/}
}
TY - JOUR AU - S. A. Aliev AU - T. E. Hashimova TI - Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk JO - Teoriâ slučajnyh processov PY - 2010 SP - 12 EP - 16 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/ LA - en ID - THSP_2010_16_1_a1 ER -
S. A. Aliev; T. E. Hashimova. Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/
[1] A. A. Borovkov, A. A. Mogulskii, “Limit theorems in the problem of the boundary crossing by a multivariate walk”, Sib. Mat. Zh., 42:2 (2001), 284–318
[2] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982
[3] D. Siegmund, Sequential Analysis. Tests and Confidence Intervals, Springer, New York, 1985
[4] F. H. Ragimov, “On the limit behavior of conditional probabilities of the crossing of nonlinear boundaries by a perturbed random walk”, Transactions of the NAS of Azerbaijan, 2006, no. 1, 163–168
[5] F. H. Ragimov, “Asymptotic expansion of the distribution of the crossing time for nonlinear boundaries”, Teor. Veroyat. Primen., 37 (1992), 580–583
[6] I. A. Ibrahimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolter-Noordhoff, Groningen, 1971
[7] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1970