Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 12-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the conditional probability of the boundary crossing by a random walk with distribution belonging to the attraction domain of a stable distribution with parameter $\alpha$.
Keywords: Random walk, nonlinear boundary crossing, limit theorems
Mots-clés : stable distribution.
@article{THSP_2010_16_1_a1,
     author = {S. A. Aliev and T. E. Hashimova},
     title = {Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {12--16},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/}
}
TY  - JOUR
AU  - S. A. Aliev
AU  - T. E. Hashimova
TI  - Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 12
EP  - 16
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/
LA  - en
ID  - THSP_2010_16_1_a1
ER  - 
%0 Journal Article
%A S. A. Aliev
%A T. E. Hashimova
%T Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk
%J Teoriâ slučajnyh processov
%D 2010
%P 12-16
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/
%G en
%F THSP_2010_16_1_a1
S. A. Aliev; T. E. Hashimova. Asymptotic behavior of the conditional probability of the nonlinear boundary crossing by a random walk. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 12-16. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a1/

[1] A. A. Borovkov, A. A. Mogulskii, “Limit theorems in the problem of the boundary crossing by a multivariate walk”, Sib. Mat. Zh., 42:2 (2001), 284–318

[2] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982

[3] D. Siegmund, Sequential Analysis. Tests and Confidence Intervals, Springer, New York, 1985

[4] F. H. Ragimov, “On the limit behavior of conditional probabilities of the crossing of nonlinear boundaries by a perturbed random walk”, Transactions of the NAS of Azerbaijan, 2006, no. 1, 163–168

[5] F. H. Ragimov, “Asymptotic expansion of the distribution of the crossing time for nonlinear boundaries”, Teor. Veroyat. Primen., 37 (1992), 580–583

[6] I. A. Ibrahimov, Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolter-Noordhoff, Groningen, 1971

[7] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1970