The maximum principle for some nonlinear stochastic control system with variable structure
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary conditions of optimality are derived for the stochastic control problem for a dynamical system with variable structure. The system is described by stochastic differential equations, when a control enters the drift and diffusion coefficients. The maximum principle for some non-linear stochastic control system with endpoint constraint is proved.
Keywords: Variable structure system, nonlinear stochastic differential equations, stochastic optimal control problem, maximum principle, admissible controls, adjoint stochastic differential equations, optimal control problem with constraint, Ekeland variation principle.
@article{THSP_2010_16_1_a0,
     author = {C. A. Agayeva and Q. U. Abushov},
     title = {The maximum principle for some nonlinear stochastic control system with variable structure},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a0/}
}
TY  - JOUR
AU  - C. A. Agayeva
AU  - Q. U. Abushov
TI  - The maximum principle for some nonlinear stochastic control system with variable structure
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 1
EP  - 11
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a0/
LA  - en
ID  - THSP_2010_16_1_a0
ER  - 
%0 Journal Article
%A C. A. Agayeva
%A Q. U. Abushov
%T The maximum principle for some nonlinear stochastic control system with variable structure
%J Teoriâ slučajnyh processov
%D 2010
%P 1-11
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a0/
%G en
%F THSP_2010_16_1_a0
C. A. Agayeva; Q. U. Abushov. The maximum principle for some nonlinear stochastic control system with variable structure. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a0/

[1] V. B. Kolmanovskii, A. D. Myshkis, Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992

[2] I. I. Gikhman, A. V. Skorokhod, Stochastic Differential Equations, Naukova Dumka, Kiev, 1968 (in Russian)

[3] W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, 1975

[4] D. I. Capuzzo, L. C. Evans, “Optimal switching for ordinary differential equations”, SIAM J. on Control and Optimiz., 22:1 (1984), 143–161

[5] S. C. Bengea, A. C. Raymond, “Optimal control of switching systems”, Automatica, 41 (2005), 11–27

[6] J. Yong, X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1999

[7] J. M. Bismut, “Linear quadratic optimal stochastic control with random coefficients”, SIAM J. on Control, 6 (1976), 419–444

[8] A. Bensoussan, Lectures on Stochastic Control in Nonlinear Filtering and Stochastic Control, Lectures Notes in Mathematics, Springer, Berlin, 1982

[9] U. G. Haussman, A Stochastic Maximum Principle for Optimal Control of Diffusions, Pitman Research Notes in Mathematics Series, 151, Longman Scientific and Technical, Harlow U. G. Haussmann, 1986, 109 pp.

[10] V. I. Arkin, M. T. Saksonov, “The necessary conditions of optimality in control problems of stochastic differential equations”, DAN SSSR, 244:1 (1979), 11–16

[11] N. I. Mahmudov, A. E. Bashirov, “First order and second order necessary conditions of optimality for stochastic systems”, Statistics and Control of Stochastic Processes (The Liptser Festschrift), Proceedings of the Steklov Mathematical Institute Seminar, 1997, 383–395

[12] Peng Shige, “A general stochastic maximum principle for optimal control problem”, SIAM. J. on Control and Optimiz., 28:4 (1990), 966–979

[13] Ch. Agayeva, G. Abushov, “About one stochastic optimal control problem for some nonlinear system with variable structure”, The International Conference “Problems of Cybernetics and Informatics” (Baku, 2006), 216–219

[14] Ch. Agayeva, G. Abushov, “Necessary condition of optimality for stochastic control systems with variable structure”, Proceedings of the 20-th International Conference “Continuous Optimization and Knowledge–Based Technologies”, EurOPT’ 2008, Lithuania, 77–81

[15] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl., 47 (1974), 324–353