Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2009_15_2_a8, author = {Bohdan I.Kopytko and Mykola I. Portenko}, title = {The problem of pasting together two diffusion processes and classical potentials}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {126--139}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a8/} }
TY - JOUR AU - Bohdan I.Kopytko AU - Mykola I. Portenko TI - The problem of pasting together two diffusion processes and classical potentials JO - Teoriâ slučajnyh processov PY - 2009 SP - 126 EP - 139 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a8/ LA - en ID - THSP_2009_15_2_a8 ER -
Bohdan I.Kopytko; Mykola I. Portenko. The problem of pasting together two diffusion processes and classical potentials. Teoriâ slučajnyh processov, Tome 15 (2009) no. 2, pp. 126-139. http://geodesic.mathdoc.fr/item/THSP_2009_15_2_a8/
[1] Amer. Math. Soc., Providence, RI | MR | Zbl
[2] O. V. Aryasova, V. I. Portenko, “One example of a random change of time that transforms a generalized diffusion process into an ordinary one”, Theory Stochast. Processes, 13(29):3 (2007), 12–21 | MR | Zbl
[3] A. D. Wentzel, “On boundary conditions for multidimensional diffusion processes”, Theor. Prob. and Appl., 2:5 (1959), 172–185
[4] B. I. Kopytko, Zh. Ja. Tsapovska, “Diffusion processes with discontinuous local characteristics of the movement”, Theory Stochast. Processes, 4(20):1-2 (1998), 139–146 | MR | Zbl
[5] B. I. Kopytko, Zh. Ja. Tsapovska, “A multidimensional model of the diffusion process with a membrane whose properties are described by a general Wentzel boundary condition”, Theory Stochast. Processes, 12(28):1-2 (2006), 77–86 | MR | Zbl
[6] B. I. Kopytko, Zh. Ja. Tsapovska, “Initial boundary value problem with the conjugation condition of the Wentzel type for a parabolic equation with discontinuous coefficients”, Math. Methods and Phys.-Mech. Fields, 51:1 (2008), 7–16 (in Ukrainian) | Zbl
[7] B. I. Kopytko, A. F. Novosyadlo, “The Brownian motion process with generalized diffusion matrix and drift vector”, Theory Stochast. Processes, 14(30):2 (2008), 60–70 | MR | Zbl
[8] E. A. Baderko, “On solving the first boundary-value problem for a parabolic equation with the use of a single-layer potential”, Dokl. AN SSSR, 283:1 (1985), 11–13 (in Russian) | MR | Zbl
[9] M. R. Cherepova, On solving by the method of potentials the first boundary-value problem for a parabolic equation of the second order in a non-cylindrical domain, Dep. VINITI, no. 361–85 Dep., 1985 (in Russian)
[10] L. L. Zaitseva, “On a probabilistic approach to the construction of the generalized diffusion processes”, Theory Stochast. Processes, 6(22):1–2 (2000), 141–146 | MR
[11] B. I. Kopytko, M. I. Portenko, “One more example of a diffusion process whose local characteristics do not determine uniquely its transition probability”, Theory Stochast. Processes, 11(27):1–2 (2005), 74–80 | MR | Zbl
[12] M. I. Portenko, “On a renewal equation arisen in some problems of the theory of generalized diffusion processes”, Ukrainian Mathem. Journ., 57:9 (2005), 1302–1312 | MR | Zbl