Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_4_a1, author = {Oleksander Ponomarenko and Yuriy Perun}, title = {Multivariate random fields on some}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {104--113}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_4_a1/} }
Oleksander Ponomarenko; Yuriy Perun. Multivariate random fields on some. Teoriâ slučajnyh processov, Tome 14 (2008) no. 4, pp. 104-113. http://geodesic.mathdoc.fr/item/THSP_2008_14_4_a1/
[1] Yaglom A. M., “Second-order homogeneous random fields”, Proc. Fourth Berkeley Symp. Math.Stat. and Probab., 2 (1961), 593–622 | MR | Zbl
[2] Ponomarenko O. I., “Integral representation of random functions with values in locally convex spaces”, Theory Probab. and Math. Stat., 1992, no. 46, 132–141 | MR | Zbl
[3] Ponomarenko O. I., “Random linear functionals of Second Order I”, Theory Probab. and Math. Stat., 1997, no. 54, 145–154 | MR
[4] Ponomarenko O. I., “Infinite-dimensional random fields on semigroups”, Theory Probab. and Math. Stat., 30 (1985), 153–158
[5] Pontrjagin L., Topological groups, Princeton Univ. Press, 1939 | MR | Zbl
[6] Weil A., L‘integration dans les groupes Topologiquies et ses Applications, Harmann, Paris, 1940 | MR
[7] Bochner S., “Hilbert distance and positive definite functions”, Ann. of Math., 42 (1941), 647–656 | DOI | MR
[8] Cartan E., “Sur la détermination dun syst` eme orthgonal complet dans un espace de Riemann symmètrique elos”, Rend. Cire. Mat.Palermo, 53 (1929), 217–252 | DOI | Zbl
[9] Weil H., “Harmonics on homogeneous manifolds”, Ann. of Math., 35 (1943), 486–494 | DOI | MR
[10] Obukhov A. M., “Statistically homogeneous random fields on a sphere”, Uspehi Mat. Nauk., 2 (1947), 196–198
[11] Ogura H., “Representations of the random fields on a sphere”, Mem.Fac.Eng. Kyoto Univ., 52:2 (1990), 81–105 | MR
[12] Shoenberg I. J., “Positive definite functions on spheres”, Duck.Math.J., 9 (1942), 96–108 | MR