Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_2_a8, author = {Nicolai Krylov}, title = {A brief overview of the $L_p$-theory of {SPDEs}}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {71--78}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a8/} }
Nicolai Krylov. A brief overview of the $L_p$-theory of SPDEs. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 71-78. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a8/
[1] B. Davis, “On Brownian slow points”, Z. Wahrscheinlichkeitstheory verw Gebiete, 64 (1983), 359-–367 | DOI | MR | Zbl
[2] T. Funaki, “Random motion of strings and related evolution equations”, Nagoya Math. Journal, 89 (1983), 129-–193 | DOI | MR | Zbl
[3] N. Konno, T. Shiga, “Stochastic partial differential equations for some measure–valued diffusions”, Probab. Theory Relat. Fields, 79 (1988), 201-–225 | DOI | MR | Zbl
[4] N. V. Krylov, “A $W_n^2$-theory of the Dirichlet problem for SPDE in general smooth domains”, Probab. Theory Relat Fields, 98 (1994), 389-–421 | DOI | MR | Zbl
[5] N. V. Krylov, “A generalization of the Littlewood-Paley inequality and some other results related to stochastic partial differential equations”, Ulam Quarterly, 2:4 (1994), 16–26 http://www.ulam.usm.edu/VIEW2.4/krylov.ps | MR | Zbl
[6] N. V. Krylov, “Elements of an $L_p$–theory of SPDEs in the whole space”, Proceedings of an International Workshop on Stochastic Partial Differential Equations (June 19-24, 1994, Center For Stochastic Processes, G. Kallianpur, M. R. Leadbetter org.), University of North Carolina, Chapel Hill, 1994, 12 pages
[7] N. V. Krylov, “On $L_p$-theory of stochastic partial differential equations in the whole space”, SIAM J. Math. Anal., 27:2 (1996), 313-–340 | DOI | MR | Zbl
[8] N. V. Krylov, “On SPDEs and superdiffusions”, Annals of Probability, 25:4 (1997), 1789-–1809 | DOI | MR | Zbl
[9] N. V. Krylov, “On a result of C. Mueller and E. Perkins”, Probab. Theory Relat. Fields, 108:4 (1997), 543-–557 | DOI | MR | Zbl
[10] N. V. Krylov, “An analytic approach to SPDEs”, Stochastic Partial Differential Equations: Six Perspectives, Mathematical Surveys and Monographs, 64, AMS, Providence, RI, 1999, 185–242 | DOI | MR
[11] N. V. Krylov, “Constructing the super–Brownian process by using SPDEs and Skorohod’s method”, Skorokhod’s Ideas in Probability Theory, Proceedings of the Institute of Math. of the Nat. Acad, of Sci. of Ukraine, 32, eds. V. Korolyuk, N. Portenko, H. Syta, Institute of Math., Kyiv, 2000, 232–240 | MR | Zbl
[12] N. V. Krylov, “One more square root law for Brownian motion and its application to SPDEs”, Probab. Theory Relat. Fields, 127 (2003), 496-–512 | DOI | MR | Zbl
[13] N. V. Krylov, “On the foundation of the $L_p$-theory of SPDEs”, Stochastic Partial Differential Equations and Applications-VII, A Series of Lecture Notes in Pure and Applied Math., eds. G. Da Prato, L. Tubaro, Chapman and Hall/CRC, 2006, 179–191 | MR | Zbl
[14] N. V. Krylov, “Maximum principle for SPDEs and its applications”, Stochastic Differential Equations: Theory and Applications, A Volume in Honor of Professor Boris L. Rozovskii, Interdisciplinary Mathematical Sciences, 2, eds. P. H. Baxendale, S. V. Lototsky, World Scientific, 2007, 311–338 | DOI | MR | Zbl
[15] C. Mueller, “Long time existence for the heat equation with a noise term”, Probab. Theory Related Fields, 90 (1991), 505-–517 | DOI | MR | Zbl
[16] C. Mueller, E. Perkins, “The compact support property for solutions to the heat equation with noise”, Probab. Theory Relat. Fields, 93 (1992), 325-–358 | DOI | MR | Zbl
[17] M. Reimers, “One dimensional stochastic partial differential equations and the branching measure diffusion”, Probab. Theory Relat. Fields, 81 (1989), 319-–340 | DOI | MR | Zbl
[18] J. B. Walsh, “An introduction to stochastic partial differential equations”, Lecture Notes in Math., 1180, 1986, 266-–439 | MR