Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_2_a5, author = {Takashi Komatsu}, title = {On the martingale problem for}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {42--51}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a5/} }
Takashi Komatsu. On the martingale problem for. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 42-51. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a5/
[1] R. F. Bass, “Uniqueness in law for pure jump type Markov processes”, Probab. Theory Related Fields, 79 (1988), 271–278 | DOI | MR
[2] I. M. Gel’fand, G. E. Shilov, Generalized Functions, v. I, Academic Press, New York, London, 1964 | MR
[3] W. Hoh, “Pseudo differential operators with negative definite symbols of variable order”, Rev. Mat. Iberoamericana, 16 (2000), 219–241 | DOI | MR | Zbl
[4] N. Jacob, L. G. Leopold, “Pseudo differential operators with variable order of differentiation generating Feller semigroups”, Integral Equations and Operator Theory, 17 (1993), 544–553 | DOI | MR | Zbl
[5] N. Jacob, “A class of Feller semigroups generated by pseudo differential operators”, Math. Z., 215 (1994), 151–166 | DOI | MR | Zbl
[6] T. Komatsu, “On the martingale problem for generators of stable processes with perturbations”, Osaka J. Math., 21 (1984)), 113–132 | MR | Zbl
[7] T. Komatsu, “Pseudo-differential operators and Markov processes”, J. Math. Soc. Japan, 36 (1984), 387–418 | DOI | MR | Zbl
[8] T. Komatsu, “On stable-like processes”, Probability Theory and Mathematical Statistics, World Scientific, Singapore, 1996, 681–691 | MR
[9] H. Kumano-go, Pseudo-Differential Operators, The MIT Press, Cambridge, Massachusetts, London, 1982 | Zbl
[10] A. Negoro, “Stable-like processes; construction of the transition density and the behavior of sample paths near $t = 0$”, Osaka J. Math., 31 (1994), 189–214 | MR | Zbl