Nonhomogeneous diffusion processes in a
Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 145-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using analytical methods, we consider the problem of constructing a nonhomogeneous multidimensional diffusion process in a halfspace with given diffusion characteristics at the inner points and general Wentzel boundary conditions.
@article{THSP_2008_14_2_a14,
     author = {Zhanneta Ya. Tsapovska},
     title = {Nonhomogeneous diffusion processes in a},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a14/}
}
TY  - JOUR
AU  - Zhanneta Ya. Tsapovska
TI  - Nonhomogeneous diffusion processes in a
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 145
EP  - 154
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a14/
LA  - en
ID  - THSP_2008_14_2_a14
ER  - 
%0 Journal Article
%A Zhanneta Ya. Tsapovska
%T Nonhomogeneous diffusion processes in a
%J Teoriâ slučajnyh processov
%D 2008
%P 145-154
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a14/
%G en
%F THSP_2008_14_2_a14
Zhanneta Ya. Tsapovska. Nonhomogeneous diffusion processes in a. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 145-154. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a14/

[1] A. D. Wentzel, “On boundary conditions for multidimensional diffusion process”, Probab. Theory Appl., 15:2 (1959), 172–185 (in Russian)

[2] B. I. Kopytko, Zh. Ya. Tsapovska, “The potential method in the parabolic boundary problem with Wentzel’s boundary condition”, Visnyk Lviv Univer. Ser. Mekh.-Mat., 2000, no. 56, 106–115 (in Ukrainian) | Zbl

[3] B. I. Kopytko, Zh. Ya. Tsapovska, “Integral representation of an operator semigroup describing a diffusion process in a domain with general Wentzel’s boundary condition”, Theory of Stochastic Processes, 5(21):34 (1999), 105–112 | MR | Zbl

[4] N. I. Portenko, Diffusion Processes in Media with Membranes, Institute of Mathematics of the NAS of Ukraine, Kyiv, 1995 (in Ukrainian) | MR | Zbl

[5] S. V. Anulova, “Diffusion processes: discontinuous coefficients, degenerate diffusion, randomized drift”, DAN USSR, 260:5 (1981), 1036–1040 (in Russian) | MR | Zbl

[6] L. L. Zaitseva, “On stochastic continuity of generalized di?usion processes constructed as the strong solution to an SDE”, Theory of Stochastic Processes, 11 (27):12 (2005), 125–135 | MR | Zbl

[7] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1989 | MR | Zbl

[8] D. E. Apushkinskaya, A. I. Nazarov, “Initial-boundary problem with limit Wentzel condition for nondivergent parabolic equations”, RAN, Algebra and Analysis, 6:9 (1995), 15–18 (in Russian) | MR

[9] Yi Zeng, Yuosong Luo, “Linear parabolic equations with Wentzel initial boundary conditions for multidimensional di?usion process”, Bull. Austral. Math. Soc., 1995, no. 51, 465–479 | MR

[10] S. D. Ivasyshen, Green Matrices of Parabolic Boundary-Value Problems, Vyshcha shkola, Kyiv, 1990 (in Ukrainian)

[11] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[12] E. A. Baderko, “On solution of the first boundary-value problem for a parabolic equation with the simple layer potential”, Dokl. AN SSSR, 283:1 (1985), 11–13 (in Russian) | MR | Zbl