Penalisations of brownian motion with
Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 116-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{THSP_2008_14_2_a12,
     author = {B. Roynette and P. Vallois and M. Yor},
     title = {Penalisations of brownian motion with},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {116--138},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a12/}
}
TY  - JOUR
AU  - B. Roynette
AU  - P. Vallois
AU  - M. Yor
TI  - Penalisations of brownian motion with
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 116
EP  - 138
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a12/
LA  - en
ID  - THSP_2008_14_2_a12
ER  - 
%0 Journal Article
%A B. Roynette
%A P. Vallois
%A M. Yor
%T Penalisations of brownian motion with
%J Teoriâ slučajnyh processov
%D 2008
%P 116-138
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a12/
%G en
%F THSP_2008_14_2_a12
B. Roynette; P. Vallois; M. Yor. Penalisations of brownian motion with. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 116-138. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a12/

[1] J. Azéma, M. Yor, “Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod””, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 625-–633 | DOI | MR

[2] J. Azéma, M. Yor, “Une solution simple au problème de Skorokhod”, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 90-–115 | DOI | MR

[3] P. Billingsley, Convergence of probability measures, John Wiley Inc., New York, 1968 | MR | Zbl

[4] A. N. Borodin, P. Salminen, “Handbook of Brownian motion—facts and formulae”, Probability and its Applications, Second, eds., Birkhäuser Verlag, Basel, 2002 | DOI | MR | Zbl

[5] L. Breiman, Probability, Addison-Wesley Publishing Company, Reading, Mass., 1968 | MR | Zbl

[6] J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968 | MR

[7] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons Inc., New York, 1966 | MR | Zbl

[8] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Second printing, corrected, Springer-Verlag, Berlin, 1974 | MR | Zbl

[9] F. B. Knight, “Brownian local times and taboo processes”, Trans. Amer. Math. Soc., 143 (1969), 173-–185 | DOI | MR | Zbl

[10] F. B. Knight, “Essentials of Brownian motion and diffusion”, Mathematical Surveys, 18, American Mathematical Society, Providence, R.I., 1981 | MR | Zbl

[11] Jan Obłój, “The Skorokhod embedding problem and its offspring (electronic)”, Probab. Surv., 2004, no. 1, 321-–390 | MR

[12] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, Third, eds., Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[13] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95:4 (1993), 451-–466 | DOI | MR | Zbl

[14] L. C. G. Rogers, David Williams, Diffusions, Markov processes, and martingales, v. 2, Itô calculus, Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000 | MR

[15] B. Roynette, P. Vallois, M. Yor, “A solution to Skorokhod’s embedding for linear Brownian motion and its local time”, Studia Sci. Math. Hungar., 39:1-2 (2002), 97-–127 | MR | Zbl

[16] B. Roynette, P. Vallois, M. Yor, “Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III”, Period. Math. Hungar., 50:1-2 (2005), 247-–280 | DOI | MR | Zbl

[17] B. Roynette, P. Vallois, M. Yor, “Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II”, Studia Sci. Math. Hungar., 43:3 (2006), 295-–360 | MR | Zbl

[18] B. Roynette, P. Vallois, M. Yor, “Limiting laws associated with Brownian motion perturbed by normalized exponential weights I”, Studia Sci. Math. Hungar., 43:2 (2006), 171–346 | MR

[19] B. Roynette, P. Vallois, M. Yor, “Pénalisations et extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère”, Séminaire de Probabilités, XXXIX (P.A. Meyer, in memoriam), Lecture Notes in Math., 1874, Springer, Berlin, 2006, 305-–336 | DOI | MR | Zbl

[20] B. Roynette, P. Vallois, M. Yor, “Some penalisations of the Wiener measure”, Japan. J. Math., 1 (2006), 263-–290 | DOI | MR | Zbl

[21] B. Roynette, P. Vallois, M. Yor, “Penalisations of multidimensional Brownian motion, VI,”, 2007 (to appear)

[22] B. Roynette, P. Vallois M. Yor, “Penalizing a Brownian motion with a function of the lengths of its excursions, VII”, 2007 (to appear)

[23] B. Roynette, P. Vallois, M. Yor, “Some extensions of Pitman’s and Ray-Knight’s theorems for penalized Brownian motions and their local times, IV”, Studia Sci. Math. Hungar., 44:4 (2007), 469–516 | MR | Zbl

[24] B. Roynette, P. Vallois, M. Yor, “Penalizing a $Bes(d)$ process $(0 2)$ with a function of its local time at $0,V$”, Studia Sci. Math. Hungar., 45 (2008) (to appear) | MR

[25] B. Roynette, M. Yor, Penalising Brownian paths: rigorous results and meta-theorems, Monograph, 2008. | MR