Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_2_a12, author = {B. Roynette and P. Vallois and M. Yor}, title = {Penalisations of brownian motion with}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {116--138}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a12/} }
B. Roynette; P. Vallois; M. Yor. Penalisations of brownian motion with. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 116-138. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a12/
[1] J. Azéma, M. Yor, “Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod””, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 625-–633 | DOI | MR
[2] J. Azéma, M. Yor, “Une solution simple au problème de Skorokhod”, Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math., 721, Springer, Berlin, 1979, 90-–115 | DOI | MR
[3] P. Billingsley, Convergence of probability measures, John Wiley Inc., New York, 1968 | MR | Zbl
[4] A. N. Borodin, P. Salminen, “Handbook of Brownian motion—facts and formulae”, Probability and its Applications, Second, eds., Birkhäuser Verlag, Basel, 2002 | DOI | MR | Zbl
[5] L. Breiman, Probability, Addison-Wesley Publishing Company, Reading, Mass., 1968 | MR | Zbl
[6] J. Dieudonné, Calcul infinitésimal, Hermann, Paris, 1968 | MR
[7] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons Inc., New York, 1966 | MR | Zbl
[8] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Second printing, corrected, Springer-Verlag, Berlin, 1974 | MR | Zbl
[9] F. B. Knight, “Brownian local times and taboo processes”, Trans. Amer. Math. Soc., 143 (1969), 173-–185 | DOI | MR | Zbl
[10] F. B. Knight, “Essentials of Brownian motion and diffusion”, Mathematical Surveys, 18, American Mathematical Society, Providence, R.I., 1981 | MR | Zbl
[11] Jan Obłój, “The Skorokhod embedding problem and its offspring (electronic)”, Probab. Surv., 2004, no. 1, 321-–390 | MR
[12] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293, Third, eds., Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[13] L. C. G. Rogers, “The joint law of the maximum and terminal value of a martingale”, Probab. Theory Related Fields, 95:4 (1993), 451-–466 | DOI | MR | Zbl
[14] L. C. G. Rogers, David Williams, Diffusions, Markov processes, and martingales, v. 2, Itô calculus, Reprint of the second (1994) edition, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000 | MR
[15] B. Roynette, P. Vallois, M. Yor, “A solution to Skorokhod’s embedding for linear Brownian motion and its local time”, Studia Sci. Math. Hungar., 39:1-2 (2002), 97-–127 | MR | Zbl
[16] B. Roynette, P. Vallois, M. Yor, “Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III”, Period. Math. Hungar., 50:1-2 (2005), 247-–280 | DOI | MR | Zbl
[17] B. Roynette, P. Vallois, M. Yor, “Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II”, Studia Sci. Math. Hungar., 43:3 (2006), 295-–360 | MR | Zbl
[18] B. Roynette, P. Vallois, M. Yor, “Limiting laws associated with Brownian motion perturbed by normalized exponential weights I”, Studia Sci. Math. Hungar., 43:2 (2006), 171–346 | MR
[19] B. Roynette, P. Vallois, M. Yor, “Pénalisations et extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère”, Séminaire de Probabilités, XXXIX (P.A. Meyer, in memoriam), Lecture Notes in Math., 1874, Springer, Berlin, 2006, 305-–336 | DOI | MR | Zbl
[20] B. Roynette, P. Vallois, M. Yor, “Some penalisations of the Wiener measure”, Japan. J. Math., 1 (2006), 263-–290 | DOI | MR | Zbl
[21] B. Roynette, P. Vallois, M. Yor, “Penalisations of multidimensional Brownian motion, VI,”, 2007 (to appear)
[22] B. Roynette, P. Vallois M. Yor, “Penalizing a Brownian motion with a function of the lengths of its excursions, VII”, 2007 (to appear)
[23] B. Roynette, P. Vallois, M. Yor, “Some extensions of Pitman’s and Ray-Knight’s theorems for penalized Brownian motions and their local times, IV”, Studia Sci. Math. Hungar., 44:4 (2007), 469–516 | MR | Zbl
[24] B. Roynette, P. Vallois, M. Yor, “Penalizing a $Bes(d)$ process $(0 2)$ with a function of its local time at $0,V$”, Studia Sci. Math. Hungar., 45 (2008) (to appear) | MR
[25] B. Roynette, M. Yor, Penalising Brownian paths: rigorous results and meta-theorems, Monograph, 2008. | MR