Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_2_a10, author = {Sergey Ya. Makhno and Irina A. Yerisova}, title = {Limit theorems for backward stochastic equations}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {93--107}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a10/} }
Sergey Ya. Makhno; Irina A. Yerisova. Limit theorems for backward stochastic equations. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 93-107. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a10/
[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1971 | MR
[2] R. Buckhadan, H. J. Engelbert, “A.Rascanu, On weak solutions of backward stochastic differential equations”, Theory Probab. Appl., 49 (2004), 70–107 | MR
[3] F. Delarue, “Auxilary SDEs for homogenization of quasilinear PDEs with periodic coefficients”, Ann. Probab., 32 (2004), 2305–2361 | DOI | MR | Zbl
[4] H. J. Engelbert, W. Schmidt, “Strong Markov continuous local martingales and solutions of onedimensional stochastic differential equations III”, Math. Nachr., 151 (1991), 149-19 | DOI | MR
[5] N. V. Krylov, Controlled Diffusion Processes, Springer, New York, 1980 | MR | Zbl
[6] S. Makhno, “Convergence of diffusion processes”, Ukr. Math. J., 44 (1992), 284–289 | MR
[7] S. Makhno, “Convergence of diffusion processes II”, Ukr. Math. J., 44 (1992), 1389–1395 | MR | Zbl
[8] S. Makhno, “Convergence of solutions of one-dimensional stochastic equations”, Theory Probab. Appl., 44 (1999), 495–510 | DOI | MR | Zbl
[9] S. Makhno, “Limit theorem for one-dimensional stochastic equations”, Theory Probab. Appl., 48 (2003), 164–169 | DOI | MR | Zbl
[10] S. Makhno, “Preservation of the convergence of solutions of stochastic equations under the perturbation of their coefficients”, Ukr. Math. Bull., 1 (2004), 251–264 | MR | Zbl
[11] P. Meyer,W. A. Zheng, “Tightness criteria for laws of semimartingales”, Annales Inst. H. Poincare section B, 20 (1984), 353–372 | MR | Zbl
[12] E. Pardoux, “BSDE’s weak convergence and homogenization of semilinear PDE”, Nonlinear Analysis, Differential Equations and Control, NATO ASI Ser., Ser. C, Math. Phys. Sci., 528, eds. F. H. Clarke, et al., Kluwer,, Dordrecht, 1999, 503–549 | MR | Zbl
[13] E. Pardoux, “Homogenization of linear and semilinear second order parabolic PDE with periodic coefficients: a probabilistic approach”, J. Funct. Anal., 167 (1999), 496–520 | DOI | MR
[14] S. Pardoux, S. Peng, “Adapted solution of backward stochastic differential equation”, System Control Lett., 14 (1990), 55–61 | DOI | MR | Zbl
[15] E. Pardoux, S. Peng, “Backward SDEs and quasilinear PDEs”, Stochastic Partial Differential Equations and their Applications, Lecture Notes and Inform. Sci., 176, eds. Rozovskii B. L. and Sowers R.), 1992, 200–217 | MR | Zbl
[16] E. Pardoux, A. Veretennikov, “Averaging of backward stochastic differential equations with application to semi-linear PDEs”, Stochastic Rep., 60 (1997), 225–270 | MR
[17] D. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, New York, 1979 | MR | Zbl