Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_2_a0, author = {Olga V. Aryasova and Mykola I. Portenko}, title = {A uniqueness theorem for the martingale problem describing a diffusion in media with membranes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--9}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/} }
TY - JOUR AU - Olga V. Aryasova AU - Mykola I. Portenko TI - A uniqueness theorem for the martingale problem describing a diffusion in media with membranes JO - Teoriâ slučajnyh processov PY - 2008 SP - 1 EP - 9 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/ LA - en ID - THSP_2008_14_2_a0 ER -
%0 Journal Article %A Olga V. Aryasova %A Mykola I. Portenko %T A uniqueness theorem for the martingale problem describing a diffusion in media with membranes %J Teoriâ slučajnyh processov %D 2008 %P 1-9 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/ %G en %F THSP_2008_14_2_a0
Olga V. Aryasova; Mykola I. Portenko. A uniqueness theorem for the martingale problem describing a diffusion in media with membranes. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 1-9. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/
[1] O. V. Aryasova, M. I. Portenko, “One example of a random change of time that transforms a generalized diffusion process into an ordinary one”, Theory Stochast. Process., 13(29):3 (2007), 12-–21 | MR | Zbl
[2] Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl | Zbl
[3] Springer, Berlin, 1965 | Zbl | Zbl
[4] D. W. Strook, S. R. S. Varadhan, “Diffusion processes with boundary conditions”, Comm. Pure Appl. Math., 23 (1971), 147-–225 | DOI | MR
[5] O. V. Aryasova, M. I. Portenko, “One class of multidimensional stochastic differential equations having no property of weak uniqueness of a solution”, Theory Stochast. Process., 11(27):3–4 (2005), 14-–28 | MR | Zbl
[6] Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968 | DOI | MR | Zbl | Zbl
[7] S. V. Anulova, “Diffusion processes with singular characteristics”, Int. Symp. Stochast. Different. Equat. Abstract. (Vilnius (1978)), 7-–11
[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–Hall, Englewood Cliffs, N.J., 1964 | MR | Zbl
[9] D. W. Strook, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979 | MR