A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{THSP_2008_14_2_a0,
     author = {Olga V. Aryasova and Mykola I. Portenko},
     title = {A uniqueness theorem for the martingale problem describing a diffusion in media with membranes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/}
}
TY  - JOUR
AU  - Olga V. Aryasova
AU  - Mykola I. Portenko
TI  - A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 1
EP  - 9
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/
LA  - en
ID  - THSP_2008_14_2_a0
ER  - 
%0 Journal Article
%A Olga V. Aryasova
%A Mykola I. Portenko
%T A uniqueness theorem for the martingale problem describing a diffusion in media with membranes
%J Teoriâ slučajnyh processov
%D 2008
%P 1-9
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/
%G en
%F THSP_2008_14_2_a0
Olga V. Aryasova; Mykola I. Portenko. A uniqueness theorem for the martingale problem describing a diffusion in media with membranes. Teoriâ slučajnyh processov, Tome 14 (2008) no. 2, pp. 1-9. http://geodesic.mathdoc.fr/item/THSP_2008_14_2_a0/

[1] O. V. Aryasova, M. I. Portenko, “One example of a random change of time that transforms a generalized diffusion process into an ordinary one”, Theory Stochast. Process., 13(29):3 (2007), 12-–21 | MR | Zbl

[2] Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl | Zbl

[3] Springer, Berlin, 1965 | Zbl | Zbl

[4] D. W. Strook, S. R. S. Varadhan, “Diffusion processes with boundary conditions”, Comm. Pure Appl. Math., 23 (1971), 147-–225 | DOI | MR

[5] O. V. Aryasova, M. I. Portenko, “One class of multidimensional stochastic differential equations having no property of weak uniqueness of a solution”, Theory Stochast. Process., 11(27):3–4 (2005), 14-–28 | MR | Zbl

[6] Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968 | DOI | MR | Zbl | Zbl

[7] S. V. Anulova, “Diffusion processes with singular characteristics”, Int. Symp. Stochast. Different. Equat. Abstract. (Vilnius (1978)), 7-–11

[8] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–Hall, Englewood Cliffs, N.J., 1964 | MR | Zbl

[9] D. W. Strook, S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 1979 | MR