Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a6, author = {Alexander V. Ivanov}, title = {Asymptotic properties of $L_p$-estimators}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {60--68}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a6/} }
Alexander V. Ivanov. Asymptotic properties of $L_p$-estimators. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 60-68. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a6/
[1] R. I. Jennrich, “Asymptotic Properties of Non-Linear Least Squares Estimators”, Ann. Math. Statist., 40 (1969), 633–643 | DOI | MR | Zbl
[2] J. Pfanzagl, “On the measurability and consistency of minimum contrast estimates”, Metrika, 14 (1969), 249–272 | DOI | Zbl
[3] L. Schmetterer, Einfuhrung in die Mathematische Statistik, Springer, Berlin, 1966 | MR | Zbl
[4] P. Huber, Robust Statistics, Wiley, New York, 1981 | MR | Zbl
[5] A. V. Ivanov, N. N. Leonenko, Statistical Analysis of Random Fields, Kluwer, Dordrecht, 1989 | MR | Zbl
[6] A. V. Ivanov, Asymptotic Theory of Nonlinear Regression, Kluwer AP, Dordrecht, 1997 | MR | Zbl
[7] A. E. Ronner, “Asymptotic Normality of $p$-Norm Estimators in Multiple Regression”, Z.Wahrsch. verw. Gebiete, 66 (1984), 613–620 | DOI | MR | Zbl
[8] A. V. Ivanov, “On consistency of $l_\alpha$-estimators of regression function parameter”, Probability Theory and Mathematical Statistics, 42 (1990), 42–48 (in Russian) | MR | Zbl
[9] T. O. Bardadym, A. V. Ivanov, “Asymptotic normality of $l_\alpha$-estimators of nonlinear regression model parameter”, DAN USSR A, 1988, no. 8, 68–70 (in Russian) | MR | Zbl
[10] T. O. Bardadym, A. V. Ivanov, “On asymptotic normality of $l_\alpha$-estimators of nonlinear regression model parameter”, Probability Theory and Mathematical Statistics, 60 (1999), 1–10 (in Ukrainian) | MR | Zbl
[11] A. V. Ivanov, I. V. Orlovsky, “$L_p$-estimates in nonlinear regression with long-range dependence”, Theory of Stochastic Processes, 7(23):3-4 (2002), 38–49 | MR
[12] H. Cramer, M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967 | MR | Zbl
[13] I. I. Gikhman, A. V. Skorokhod, Introduction to the Theory of Random Processes, Nauka, Moscow, 1965 (in Russian) | MR
[14] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965 | MR | Zbl