Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a14, author = {Natalya V. Smorodina}, title = {The measure preserving and nonsingular}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {144--154}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a14/} }
Natalya V. Smorodina. The measure preserving and nonsingular. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 144-154. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a14/
[1] I. M. Gel’fand, M. I. Graev, A. M. Vershik, “Representations of the group of diffeomorphisms”, Russian Math. Surveys, 30 (1975), 3–50 | MR | Zbl
[2] J. F. C. Kingman, Poisson Processes, Clarendon Press, Oxford, 1993 | MR | Zbl
[3] J. Kerstan, K. Mattes, J. Mecke, Infinite Divisible Point Processes, Akademie-Verlag, Berlin, 1978 | MR
[4] A. V. Skorokhod, “On the differentiability of measures which correspond to stochastic processes I”, Theory Probab. Appl., II (1957), 629–649 ; 407–423 | MR
[5] A. V. Skorokhod, Stochastic Processes with Independent Increments, Nauka, Moskow, 1986 | MR | Zbl
[6] N. V. Smorodina, “The invariant and quasi-invariant transformations of the stable Lévy processes”, Acta Appl. Math., 97:1–3 (2007), 221–238 | MR
[7] Y. Takahashi, “Absolute continuity of Poisson random fields”, Publ. Res. Inst. Math. Sci., 26 (1990), 629–649 | DOI | MR
[8] A. Vershik, N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson-Dirichlet measures”, C.R.Acad.Sci.Paris Ser.I Math., 1999, no. 329, 163–168 | MR | Zbl