The measure preserving and nonsingular
Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 144-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi(t), t\in[0, 1],$ be a jump Lévy process. By ${\mathcal P}_\xi,$ we denote the law of $\xi$ in the Skorokhod space ${\mathbb D}[0, 1].$ Under some conditions on the Lévy measure of the process, we construct the group of ${\mathcal P}_\xi$ – preserving transformations of ${\mathbb D}[0, 1].$ For the Lévy process that has only positive (or only negative) jumps, we construct the semigroup of nonsingular transformations.
@article{THSP_2008_14_1_a14,
     author = {Natalya V. Smorodina},
     title = {The measure preserving and nonsingular},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {144--154},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a14/}
}
TY  - JOUR
AU  - Natalya V. Smorodina
TI  - The measure preserving and nonsingular
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 144
EP  - 154
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a14/
LA  - en
ID  - THSP_2008_14_1_a14
ER  - 
%0 Journal Article
%A Natalya V. Smorodina
%T The measure preserving and nonsingular
%J Teoriâ slučajnyh processov
%D 2008
%P 144-154
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a14/
%G en
%F THSP_2008_14_1_a14
Natalya V. Smorodina. The measure preserving and nonsingular. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 144-154. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a14/

[1] I. M. Gel’fand, M. I. Graev, A. M. Vershik, “Representations of the group of diffeomorphisms”, Russian Math. Surveys, 30 (1975), 3–50 | MR | Zbl

[2] J. F. C. Kingman, Poisson Processes, Clarendon Press, Oxford, 1993 | MR | Zbl

[3] J. Kerstan, K. Mattes, J. Mecke, Infinite Divisible Point Processes, Akademie-Verlag, Berlin, 1978 | MR

[4] A. V. Skorokhod, “On the differentiability of measures which correspond to stochastic processes I”, Theory Probab. Appl., II (1957), 629–649 ; 407–423 | MR

[5] A. V. Skorokhod, Stochastic Processes with Independent Increments, Nauka, Moskow, 1986 | MR | Zbl

[6] N. V. Smorodina, “The invariant and quasi-invariant transformations of the stable Lévy processes”, Acta Appl. Math., 97:1–3 (2007), 221–238 | MR

[7] Y. Takahashi, “Absolute continuity of Poisson random fields”, Publ. Res. Inst. Math. Sci., 26 (1990), 629–649 | DOI | MR

[8] A. Vershik, N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson-Dirichlet measures”, C.R.Acad.Sci.Paris Ser.I Math., 1999, no. 329, 163–168 | MR | Zbl