Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a13, author = {D. S. Silvestrov}, title = {Convergence in skorokhod $J$-topology for}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {126--143}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a13/} }
D. S. Silvestrov. Convergence in skorokhod $J$-topology for. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 126-143. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a13/
[1] V. V. Anisimov, Random Processes with Discrete Components, Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev, 1988 | MR
[2] V. V. Anisimov, Switching Processes in Queuing Models. Applied Stochstic Models Series, ISTE, Washington, 2007 | MR
[3] F. Anscombe, “Large sample theory of sequential estimation”, Proc. Cambridge Phil. Soc., 48, 1952, 600–607 | DOI | MR | Zbl
[4] V. E. Bening, V. Yu. Korolev, Generalized Poisson Models and their Applications in Insurance and Finance. Modern Probability and Statistics, VSP, Utrecht, 2002
[5] P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, Wiley, New York, 1968, 1999 | MR | Zbl
[6] P. Billingsley, M. Wishura, “The origins of Skorokhod’s topology”, Skorokhod’s Ideas in Probability Theory, Proceed. Inst. Math. National Acad. Sci. Ukraine, 32, eds. V. Korolyuk, N. Portenko, H. Syta, Inst. Math., Kiev, 2000, 61–65 | Zbl
[7] Rus. Math. Surveys, 27:1, 1–42 | MR | Zbl
[8] Rus. Math. Surveys, 31:2, 1–69 | MR | Zbl
[9] A. A. Borovkov, A. A. Mogul’skij, A. I. Sakhanenko, “Limit theorems for random processes”, Probability Theory – 7, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 82, eds. Sakharova, V.P., et al., VINTI, Moscow, 1995, 5–199 | MR
[10] M. Csörgő, L. Horváth, Weighted Approximations in Probability and Statistics, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1993 | MR | Zbl
[11] M. Csörgő, L. Horváth, Limit Theorems in Change-Point Analysis, Wiley Series in Probability and Statistics, Wiley, New York, 1997 | MR | Zbl
[12] J. Davidson, Stochastic Limit Theory. An Introduction for Econometricians. Advanced Texts in Econometrics, Clarendon Press and Oxford University Press, New York, 1994 | MR
[13] R. L. Dobrushin, “Lemma on limit of compound random functions”, Uspehi Mat. Nauk, 10 (1955), 157–159 | MR | Zbl
[14] M. D. Donsker, “An invariance principle for certain probability limit theorems”, Mem. Amer. Math. Soc., 6 (1951), 1–12 | MR
[15] M. D. Donsker, “Justification and extension of Doob’s heuristic approach to the Komogorov–Smirnov theorems”, Ann. Math. Statist., 23 (1952), 277–281 | DOI | MR | Zbl
[16] J. L. Doob, “Heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statist., 20 (1949), 393–403 | DOI | MR | Zbl
[17] J. L. Doob, Stochastic Processes, Wiley, New York, 1953 ; Chapman Hall, London and Wiley Classics Library, Wiley, New York, 1990 | MR | Zbl | MR
[18] R. M. Dudley, “Weak convergence of probabilities on non-separable metric spaces and empirical measures on Euclidean spaces”, Illinois J. Math., 10 (1966), 109–126 | MR | Zbl
[19] P. Erdös, M. Kac, “On certain limit theorems of the theory of probability”, Bull. Amer. Math. Soc., 52 (1946a), 292–302 | DOI | MR | Zbl
[20] P. Erdös, M. Kac, “On the number of positive sums of independent random variables”, Bull. Amer. Math. Soc., 53 (1946b), 1011–1020 | DOI | MR
[21] S. N. Ethier, T. Kurtz, Markov Processes. Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1986 | DOI | MR | Zbl
[22] I. I. Gikhman, “About one theorem of A.N. Kolmogorov”, Nauch. Zap. Kiev Univ., Mat. Sbornik, 7 (1953), 76–94 | MR
[23] I. I. Gikhman, A. V. Skorokhod, Introduction to the Theory of Random Processes., English editions: W. B. Saunders Co., Philadelphia (1969) and Dover, Mineola, NY (1996), Probability Theory and Mathematical Statistics, Nauka, Moscow, 1965 | MR
[24] I. I. Gikhman, A.V. Skorokhod, Theory of Random Processes, English editions: The Theory of Stochastic Processes. 1. Fundamental Principles of Mathematical Sciences, 210, Springer, New York (1974) and Berlin (1980), v. 1, Probability Theory and Mathematical Statistics, Nauka, Moscow, 1971 | MR
[25] B. V. Gnedenko, A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, English editions: Addison-Wesley, Cambridge, Mass. (1954) and Reading, Mass. (1968), Gostehizdat, Moscow, 1949 | MR
[26] B. V. Gnedenko, V. Yu. Korolev, Random Summation. Limit Theorems and Applications, CRC Press, Boca Raton, FL, 1996 | MR | Zbl
[27] A. Gut, Stopped Random Walks. Limit Theorems and Applications, Probability and its Applications, A Series of the Applied Probability Trust, Springer, New York, 1988 | MR | Zbl
[28] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Fundamental Principles of Mathematical Sciences, 288, Springer, Berlin moreref, 1987 | MR | Zbl
[29] V. V. Kalashnikov, Geometric Sums: Bounds for Rare Events with Applications, Mathematics and its Applications, 413, Kluwer, Dordrecht, 1997 | MR | Zbl
[30] A. Khintchine, Asymptotische Gesetze derWahrscheinlichkeitsrechnung, Russian edition: Asymptotic Laws of Probability Theory. ONTI, Moscow–Leningrad (1936), Springer, Berlin, 1933
[31] A. N. Kolmogorov, “One generalisation of Laplace–Liapounov theorem”, Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat., 1931, 959–962
[32] A. N. Kolmogorov, “About limit theorems of probability theory”, Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat., 1933, 366–372
[33] Theory Probab. Appl., 1, 215–222 | DOI | MR | Zbl
[34] A. N. Kolmogorov, Yu. V. Prokhorov, “On sums of a random number of random terms”, Uspehi Mat. Nauk, 4 (1949), 168–172 | MR | Zbl
[35] A. N. Kolmogorov, Yu. V. Prokhorov, “Zufällige Funktionen und Grenzverteilungssätze”, Berich über die Tagung Wahrscheinlichkeitsrechnung und Mathematischen Statistik, Deutscher Verlag der Wissenschaften, Berlin, 1954, 113–126 | MR
[36] V. S. Korolyuk, N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, Singapore, 2005 | MR
[37] V. M. Kruglov, V.Yu. Korolev, Limit Theorems for Random Sums, Izdatel’stvo Moskovskogo Universiteta, Moscow, 1990 | MR | Zbl
[38] L. Le Cam, “Convergence in distribution of stochastic processes”, Univ. California Publ. Statist., 2:11 (1957), 207–236 | MR | Zbl
[39] P. Lévy, Théorie de l’Addition des Variables Aléatories, Gauthier-Villars, Paris, 1937; 1954
[40] P. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948 ; 1965 | MR | Zbl
[41] T. Lindvall, “Weak convergence of probability measures and random functions in the function space $D[0,\infty)$”, J. Appl. Probab., 10 (1973), 109–121 | DOI | MR | Zbl
[42] R. Sh. Liptser, A. N. Shiryaev, Theory of Martingales. Probability Theory and Mathematical Statistics, English edition: Mathematics and its Applications (Soviet Series), 49, Kluwer, Dordrecht (1989), Nauka, Moscow, 1986 | MR
[43] Yu. Mishura, “Skorokhod space and Skorokhod topology in probabilistic considerations during 1956–1999”, Skorokhod’s Ideas in Probability Theory, Proceed. Inst. Math. National Acad. Sci. Ukraine, 32, eds. V. Korolyuk, N. Portenko, H. Syta, Kiev, 2000, 281–297 | MR | Zbl
[44] K. R. Parthasarathy, Probability Measures on Metric Spaces, Probability and Mathematical Statistics, 3, Academic Press, New York, 1967 | MR
[45] Yu. V. Prokhorov, “Probability distributions in functional spaces”, Uspehi Mat. Nauk, 8 (1953), 165–-167 | MR | Zbl
[46] Theory Probab. Appl., 1, 157–-214 | DOI | MR
[47] I. Rahimov, ) Random Sums and Branching Stochastic Processes, Lecture Notes in Statistics, 96, Springer, New York, 1995 | DOI | MR
[48] R. Rényi, “On the asymptotic distribution of the sum of a random number of independent random variables”, Acta Math. Acad. Sci. Hung., 8 (1957), 193–199 | DOI | MR
[49] H. Robbins, “The asymptotic distribution of the sum of a random number of random variables”, Bull. Amer. Math. Soc., 54 (1948), 1151–1161 | DOI | MR | Zbl
[50] R. F. Serfozo, “Weak convergence of superpositions of randomly selected partial sums”, Ann. Probab., 1 (1973), 1044–1056 | DOI | MR | Zbl
[51] Soviet Math. Dokl., 12, 1282–1285 | MR | Zbl
[52] Soviet Math. Dokl., 12, 1335–1338 | MR | Zbl
[53] Theory Probab. Appl., 17, 669–677 | DOI | MR | Zbl
[54] Soviet Math. Dokl., 13, 152–154 | MR | Zbl
[55] Theory Probab. Math. Statist., 6, 109–119 | MR
[56] Theory Probab. Math. Statist., 7, 125–138 | MR | Zbl
[57] D. S. Silvestrov, Limit Theorems for Composite Random Functions, Vysshaya Shkola and Izdatel’stvo Kievskogo Universiteta, Kiev, 1974 | MR
[58] D. S. Silvestrov, “Generalized exceeding times, renewal and risk processes”, Theory Stoch. Process., 6(22):3–4 (2000), 125–182 ; Proceedings of the Third International School on Applied Statistics, Financial and Actuarial Mathematics (Feodosiya, 2000), eds. D. Silvestrov, M. Yadrenko, A. Olenko, N. Zinchenko | MR
[59] D. S. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Probability and Its Applications, Springer, London, 2004 | DOI | MR | Zbl
[60] D. S. Silvestrov, J. L. Teugels, “Limit theorems for extremes with random sample size”, Adv. Appl. Probab., 30 (1998), 777–806 | DOI | MR | Zbl
[61] D. S. Silvestrov, J. L. Teugels, “Limit theorems for mixed max-sum processes with renewal stopping”, Ann. Appl. Probab., 14 (2004), 1838–1869 | DOI | MR
[62] A. V. Skorokhod, “On transition from a sequence of sums of independent random variables to a homogeneous random process with independent increments”, Dokl. Akad. Nauk SSSR, 104 (1955), 364–367 | MR | Zbl
[63] A. V. Skorokhod, “On a class of limit theorems for Markov processes”, Dokl. Akad. Nauk SSSR, 106 (1955), 781–784 | MR
[64] Theory Probab. Appl., 1, 261–290 | DOI | MR | Zbl
[65] Theory Probab. Appl., 2, 138–171 | DOI | MR | Zbl
[66] Theory Probab. Appl., 3, 202–246 | DOI | MR | Zbl
[67] A. V. Skorokhod, Studies in the Theory of Random Processes, English edition: Addison-Wesley, Reading, Mass. (1965), Izdatel’stvo Kievskogo Universiteta, Kiev, 1961 | MR
[68] A. V. Skorokhod, Random Processes with Independent Increments, English edition: Nat. Lending Library for Sci. and Tech., Boston Spa (1971), Probability Theory and Mathematical Statistics, Nauka, Moscow, 1964 | MR
[69] C. Stone, “Weak convergence of stochastic processes defined on semi-infinite time intervals”, Proc. Amer. Math. Soc., 14, 1963, 694–696 | DOI | MR | Zbl
[70] D. W. Stroock, S. R. S. Varadhan, “Diffusions processes with continuous coefficients I”, Commun. Pure Appl. Math., 22 (1969), 345–400 ; “Diffusions processes with continuous coefficients II”, 479–-530 | DOI | MR | Zbl | Zbl
[71] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusions, Fundamental Principles of Mathematical Sciences, 233, Springer, New York, 1979 | MR
[72] Transl. Amer. Math. Soc., Ser. II, 48 (1965), 161–228 | MR
[73] A. Wald, “Some generalizations of the theory of cumulative sums of random variables”, Ann. Math. Statist., 16 (1945), 287–293 | DOI | MR | Zbl
[74] W. Whitt, “Some useful functions for functional limit theorems”, Math. Oper. Res., 5 (1980), 67–85 | DOI | MR | Zbl
[75] W. Whitt, Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and their Application to Queues, Springer, New York, 2002 | MR | Zbl