Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2008_14_1_a10, author = {Kirill V. Medvedev}, title = {Certain properties of triangular}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {95--99}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/} }
Kirill V. Medvedev. Certain properties of triangular. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/
[1] D. E. Aleksandrova, “Convergence of triangular transformations of measures”, Theory Probab. Appl., 50:1 (2006), 113–118 | DOI | MR
[2] S. G. Bobkov, “Large deviations via transference plans, Nova Sci. Publ., New York,”, Advances in Math. Research, 2 (2003), 151–175 | MR | Zbl
[3] V. I. Bogachev, Measure Theory, v. 1,2, Springer, Berlin, 2007 | MR | Zbl
[4] V. I. Bogachev, A. V. Kolesnikov, “Nonlinear transformations of convex measures”, Theory Probab. Appl., 50:1 (2006), 34–52 | DOI | MR | Zbl
[5] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “On triangular transformations of measures”, Dokl. Math., 69:3 (2004), 438–442 | MR | Zbl
[6] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “Triangular transformations of measures”, Sbornik Math., 196:3-4 (2005), 309–335 | DOI | MR | Zbl
[7] D. Feyel, A. S. Üstünel, M. Zakai, “The realization of positive random variables via absolutely continuous transformations of measure on Wiener space”, Probability Surveys, 3 (2006), 170–205 | DOI | MR | Zbl
[8] H. Knothe, “Contributions to the theory of convex bodies”, Michigan Math. J., 4 (1957), 39–52 | DOI | MR | Zbl
[9] A. V. Kolesnikov, “Convexity inequalities and nonlinear transformations of measures”, Dokl. Math., 69. 3 (2004), 368–372 | MR | Zbl
[10] E. S. Polovinkin, M. V. Balashov, Elements of Convex and Strongly Convex Analysis, Fizmatlit, Moscow, 2004 (in Russian) | MR
[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[12] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6 (1996), 587–600 | DOI | MR | Zbl