Certain properties of triangular
Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 95-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of triangular mappings on ${\mathbb R}^n,$ i.e., mappings $T$ such that the $i$th coordinate function $T_i$ depends only on the variables $x_1,\ldots,x_i.$ Weshow that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations.
@article{THSP_2008_14_1_a10,
     author = {Kirill V. Medvedev},
     title = {Certain properties of triangular},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/}
}
TY  - JOUR
AU  - Kirill V. Medvedev
TI  - Certain properties of triangular
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 95
EP  - 99
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/
LA  - en
ID  - THSP_2008_14_1_a10
ER  - 
%0 Journal Article
%A Kirill V. Medvedev
%T Certain properties of triangular
%J Teoriâ slučajnyh processov
%D 2008
%P 95-99
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/
%G en
%F THSP_2008_14_1_a10
Kirill V. Medvedev. Certain properties of triangular. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/

[1] D. E. Aleksandrova, “Convergence of triangular transformations of measures”, Theory Probab. Appl., 50:1 (2006), 113–118 | DOI | MR

[2] S. G. Bobkov, “Large deviations via transference plans, Nova Sci. Publ., New York,”, Advances in Math. Research, 2 (2003), 151–175 | MR | Zbl

[3] V. I. Bogachev, Measure Theory, v. 1,2, Springer, Berlin, 2007 | MR | Zbl

[4] V. I. Bogachev, A. V. Kolesnikov, “Nonlinear transformations of convex measures”, Theory Probab. Appl., 50:1 (2006), 34–52 | DOI | MR | Zbl

[5] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “On triangular transformations of measures”, Dokl. Math., 69:3 (2004), 438–442 | MR | Zbl

[6] V. I. Bogachev, A. V. Kolesnikov, K. V. Medvedev, “Triangular transformations of measures”, Sbornik Math., 196:3-4 (2005), 309–335 | DOI | MR | Zbl

[7] D. Feyel, A. S. Üstünel, M. Zakai, “The realization of positive random variables via absolutely continuous transformations of measure on Wiener space”, Probability Surveys, 3 (2006), 170–205 | DOI | MR | Zbl

[8] H. Knothe, “Contributions to the theory of convex bodies”, Michigan Math. J., 4 (1957), 39–52 | DOI | MR | Zbl

[9] A. V. Kolesnikov, “Convexity inequalities and nonlinear transformations of measures”, Dokl. Math., 69. 3 (2004), 368–372 | MR | Zbl

[10] E. S. Polovinkin, M. V. Balashov, Elements of Convex and Strongly Convex Analysis, Fizmatlit, Moscow, 2004 (in Russian) | MR

[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl

[12] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6 (1996), 587–600 | DOI | MR | Zbl