Certain properties of triangular
Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 95-99

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence of triangular mappings on ${\mathbb R}^n,$ i.e., mappings $T$ such that the $i$th coordinate function $T_i$ depends only on the variables $x_1,\ldots,x_i.$ Weshow that, under broad assumptions, the inverse mapping to a canonical triangular transformation is canonical triangular as well. An example is constructed showing that the convergence in variation of measures is not sufficient for the convergence almost everywhere of the associated canonical triangular transformations. Finally, we show that the weak convergence of absolutely continuous convex measures to an absolutely continuous measure yields the convergence in variation. As a corollary, this implies the convergence in measure of the associated canonical triangular transformations.
@article{THSP_2008_14_1_a10,
     author = {Kirill V. Medvedev},
     title = {Certain properties of triangular},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {95--99},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/}
}
TY  - JOUR
AU  - Kirill V. Medvedev
TI  - Certain properties of triangular
JO  - Teoriâ slučajnyh processov
PY  - 2008
SP  - 95
EP  - 99
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/
LA  - en
ID  - THSP_2008_14_1_a10
ER  - 
%0 Journal Article
%A Kirill V. Medvedev
%T Certain properties of triangular
%J Teoriâ slučajnyh processov
%D 2008
%P 95-99
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/
%G en
%F THSP_2008_14_1_a10
Kirill V. Medvedev. Certain properties of triangular. Teoriâ slučajnyh processov, Tome 14 (2008) no. 1, pp. 95-99. http://geodesic.mathdoc.fr/item/THSP_2008_14_1_a10/