Approximation of random processes in the space $L_2(T)$
Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 64-68
Cet article a éte moissonné depuis la source Math-Net.Ru
The estimation for distribution of the norms of strictly sub-Gaussian random processes in the space $L_2(T)$ is obtained. The approximation of some classes of strictly sub-Gaussian random processes with given accuracy and reliability is considered.
Keywords:
Approximation, $SSub(\Omega)$ processes, broken lines.
@article{THSP_2007_13_4_a3,
author = {Olexandra Kamenschykova},
title = {Approximation of random processes in the space $L_2(T)$},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {64--68},
year = {2007},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a3/}
}
Olexandra Kamenschykova. Approximation of random processes in the space $L_2(T)$. Teoriâ slučajnyh processov, Tome 13 (2007) no. 4, pp. 64-68. http://geodesic.mathdoc.fr/item/THSP_2007_13_4_a3/
[1] V.V̇. Buldygin, Y. V. Kozachenko, Metric characterization of random variables and random processes, American Mathematical Society, Providence, R I, 2000
[2] Y. V. Kozachenko, A. O. Pashko, Simulation of random processes, Kyiv University, Kyiv, 1999
[3] O. Kamenshykova “Linear interpolation of $SSub_\varphi(\Omega)$ processes”, Bulletin of the University of Uzhgorod: Mathematics and Informatics, 14 (2007), 39–49