Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_3_a8, author = {Anatoly V. Skorokhod}, title = {Homogeneous {Markov} chains in compact spaces}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {80--95}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a8/} }
Anatoly V. Skorokhod. Homogeneous Markov chains in compact spaces. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 80-95. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a8/
[1] N. M. Krylov, N. N. Bogolubov, “The general measure theory and its application to dynamical systems of non-linear mechanics”, Zapysky Kafedry Mat. Fiz. AN SSSR, 1937, no. 3, 55–112
[2] N. M. Krylov, N. N. Bogolubov, “On some problems of ergodic theory of stochastic systems”, Zapysky Kafedry Mat. Fiz. AN SSSR, no. 4, 243–287
[3] M. V. Bebutov, “Markov chains with a compact state space”, Matem.Sb., 10(52) (1942), 213–238
[4] A. N. Kolmogorov, “Denumerable Markov chains”, Bull. MGU, 1:3 (1937), 1–16
[5] S. Orey, “Recurrent Markov chains”, Pacific J.Math., 9 (1959), 805–827