Homogeneous Markov chains in compact spaces
Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 80-95
Cet article a éte moissonné depuis la source Math-Net.Ru
For homogeneous Markov chains in a compact and locally compact spaces, the ergodic properties are investigated, using the notions of topological recurrence and connections
Keywords:
topologically recurrent state, topologically connected states, invariant measure.
Mots-clés : Markov chain
Mots-clés : Markov chain
@article{THSP_2007_13_3_a8,
author = {Anatoly V. Skorokhod},
title = {Homogeneous {Markov} chains in compact spaces},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {80--95},
year = {2007},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a8/}
}
Anatoly V. Skorokhod. Homogeneous Markov chains in compact spaces. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 80-95. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a8/
[1] N. M. Krylov, N. N. Bogolubov, “The general measure theory and its application to dynamical systems of non-linear mechanics”, Zapysky Kafedry Mat. Fiz. AN SSSR, 1937, no. 3, 55–112
[2] N. M. Krylov, N. N. Bogolubov, “On some problems of ergodic theory of stochastic systems”, Zapysky Kafedry Mat. Fiz. AN SSSR, no. 4, 243–287
[3] M. V. Bebutov, “Markov chains with a compact state space”, Matem.Sb., 10(52) (1942), 213–238
[4] A. N. Kolmogorov, “Denumerable Markov chains”, Bull. MGU, 1:3 (1937), 1–16
[5] S. Orey, “Recurrent Markov chains”, Pacific J.Math., 9 (1959), 805–827