Local limit theorem for triangular
Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a triangular array of random variables $\{X_{k,n}, k=1, \ldots, c_n; n\in{\mathbb N}\}$ such that, for every $n,$ the variables $X_{1,n},\ldots,X_{c_n,n}$ are independent and identically distributed, the local limit theorem for the variables $S_n = X_{1,n} + \ldots + X_{c_n,n}$ is established.
Keywords: Local limit theorem, canonical measure, infinitely divisible distribution.
@article{THSP_2007_13_3_a5,
     author = {Igor A. Korchinsky and Alexey M. Kulik},
     title = {Local limit theorem for triangular},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a5/}
}
TY  - JOUR
AU  - Igor A. Korchinsky
AU  - Alexey M. Kulik
TI  - Local limit theorem for triangular
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 48
EP  - 54
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a5/
LA  - en
ID  - THSP_2007_13_3_a5
ER  - 
%0 Journal Article
%A Igor A. Korchinsky
%A Alexey M. Kulik
%T Local limit theorem for triangular
%J Teoriâ slučajnyh processov
%D 2007
%P 48-54
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a5/
%G en
%F THSP_2007_13_3_a5
Igor A. Korchinsky; Alexey M. Kulik. Local limit theorem for triangular. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 48-54. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a5/

[1] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1971

[2] I. A. Ibragimov, Yu. V. Linnik, Independent and Stationarily Connected Variables, Nauka, Moscow, 1965 (Russian)

[3] O. Kallenberg, “Splitting at backward times in regenerative sets”, Ann. Prob., 9 (1981), 781-–799