On the representation of solutions of anticipating
Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solution of an anticipating linear partial stochastic differential equation is constructed by means of the Fourier transformation.
Keywords: Anticipating initial condition, extended stochastic integral, partial stochastic differential equation.
@article{THSP_2007_13_3_a4,
     author = {Alexandr V. Ilchenko},
     title = {On the representation of solutions of anticipating},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a4/}
}
TY  - JOUR
AU  - Alexandr V. Ilchenko
TI  - On the representation of solutions of anticipating
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 38
EP  - 47
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a4/
LA  - en
ID  - THSP_2007_13_3_a4
ER  - 
%0 Journal Article
%A Alexandr V. Ilchenko
%T On the representation of solutions of anticipating
%J Teoriâ slučajnyh processov
%D 2007
%P 38-47
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a4/
%G en
%F THSP_2007_13_3_a4
Alexandr V. Ilchenko. On the representation of solutions of anticipating. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 38-47. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a4/

[1] A. A. Dorogovtsev, “Anticipating equations and fltration problem”, Theory of Stochastic Processes, 3(19):1–2 (1997), 154–163

[2] A. A. Dorogovtsev, Stochastic Analysis and Random Maps in Hilbert Space, VSP, Utrecht, 1994

[3] A. A. Dorogovtsev, “One formula for the solution of Itô–Volterra equation with the extended stochastic integral”, Random Processes and Infinitely Dimensional Analysis, Inst. Math., Kyiv, 1992, 41–56 (Russian)

[4] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. 1, Springer, Berlin, 1983

[5] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995

[6] A. V. Skorokhod, “One generalization of the stochastic integral”, Probability Theory and Applications, 20:2 (1975), 223–237