Conditioning of gaussian functionals
Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 29-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article, we consider terms of the Gaussian chaotic expansion under conditioning with respect to some sigma-field and discuss the possibility to organize the orthogonal expansion from them.
Keywords: Gaussian white noise, Ito–Wiener expansion, conditional expectation, polynomially nondegenerate measure.
@article{THSP_2007_13_3_a3,
     author = {Andrey A. Dorogovtsev},
     title = {Conditioning of gaussian functionals},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a3/}
}
TY  - JOUR
AU  - Andrey A. Dorogovtsev
TI  - Conditioning of gaussian functionals
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 29
EP  - 37
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a3/
LA  - en
ID  - THSP_2007_13_3_a3
ER  - 
%0 Journal Article
%A Andrey A. Dorogovtsev
%T Conditioning of gaussian functionals
%J Teoriâ slučajnyh processov
%D 2007
%P 29-37
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a3/
%G en
%F THSP_2007_13_3_a3
Andrey A. Dorogovtsev. Conditioning of gaussian functionals. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 29-37. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a3/

[1] D. Nualart, The Malliavin Calculus and Related Topics, Springer, New York, 1995

[2] M. Sanz–Solé, Malliavin Calculus. With Applications to Stochastic Partial Differential Equations, EPEL Press, Lausanne, 2005

[3] A. A. Dorogovtsev, Stochastic Analysis and Random Maps in Hilbert Space, VSP, Utrecht, Tokyo, 1994

[4] T. Sekiguchi, Y. Shyota, “$L_2$-theory of non-causal stochastic integrals”, Math. Reports Toyama Univ., 85:8 (1985), 119-–195

[5] A. A. Dorogovtsev, “Stochastic integral with respect to Arratia flow”, Dokl. Akad. Nauk, 410:2 (2006), 156-–157

[6] N. I. Portenko, “On multidimensional skew Brownian motion and the Feynman–Kac formula”, Stochastic Processes, 4:1–2 (1998), 60-–70

[7] Le J. Yves, R. Olivier, “Flows, coalescense and noise”, Ann. Probab., 32:2 (2004), 1247-–1315

[8] A. A. Dorogovtsev, “Measurable functionals and ?nitely absolutely continuous measures on Banach space”, Ukrainian. Math. Journ., 52:9 (2000), 1194-–1204

[9] V. E. Berezhnoy, “On the equivalence of norms on the space of $\gamma$-measurable polynomials”, Moscow Univ. Bull., Ser. Math., 2004, no. 4, 54-–56