One example of a random change of
Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 12-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a random change of time for a class of generalized di?usion processes such that the corresponding stochastic differential equation (with generalized coe?cients) is transformed into an ordinary one (its coe?cients are some non-generalized functions). It turns out that the latter stochastic differential equation has no property of the (weak) uniqueness of a solution.
Keywords: random change of time, stochastic differential equation, uniqueness of solution.
Mots-clés : Diffusion process
@article{THSP_2007_13_3_a1,
     author = {Olga V. Aryasova and Mykola I. Portenko},
     title = {One example of a random change of},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {12--21},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a1/}
}
TY  - JOUR
AU  - Olga V. Aryasova
AU  - Mykola I. Portenko
TI  - One example of a random change of
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 12
EP  - 21
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a1/
LA  - en
ID  - THSP_2007_13_3_a1
ER  - 
%0 Journal Article
%A Olga V. Aryasova
%A Mykola I. Portenko
%T One example of a random change of
%J Teoriâ slučajnyh processov
%D 2007
%P 12-21
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a1/
%G en
%F THSP_2007_13_3_a1
Olga V. Aryasova; Mykola I. Portenko. One example of a random change of. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 12-21. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a1/

[1] O. V. Aryasova, M. I. Portenko, “One class of multidimensional stochastic di?erential equations having no property of weak uniqueness of a solution”, Theory Stochast. Process, 11:27 (2005), 14-–28

[2] v. I, II, Acad.Press., Springer, New York, Berlin, 1965

[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–Hall, Englewood Cliffs, N.J., 1964

[4] Amer. Math. Soc., Providence, RI, 1990

[5] N. I. Portenko, “On multidimensional skew Brownian motion and the Feynman–Kac formula”, Theory Stochast. Process., 4:20 (1998), 60–70