On one stochastic optimal control
Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru
The purpose of this paper is to give necessary conditions for the optimality of non- linear stochastic control systems with variable delay and with constraint on the right end of a trajectory. The necessary optimality conditions in the form of a stochastic analogy of the maximum principle are obtained. These conditions are contained in Theorems 1 and 2.
Keywords:
Stochastic differential equations, variable delay, stochastic optimal control problem, necessary conditions of optimality, admissible controls.
@article{THSP_2007_13_3_a0,
author = {Ch. A. Agayeva and J. J. Allahverdiyeva},
title = {On one stochastic optimal control},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {3--11},
year = {2007},
volume = {13},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a0/}
}
Ch. A. Agayeva; J. J. Allahverdiyeva. On one stochastic optimal control. Teoriâ slučajnyh processov, Tome 13 (2007) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/THSP_2007_13_3_a0/
[1] V. B. Kolmanovskii, A. D. Myshkis, Applied Theory of Functional Differential Equations, Kluwer, N.Y., 1992
[2] Ye. F. Tsarkov, Random Perturbations of Differential-Functional Equations, Riga, 1989 (Russian)
[3] F. L. Chernousko, V. B. Kolmanovsky, Optimal Control under Random Perturbations, Nauka, Moscow, 1978 (Russian)
[4] Ch. A. Agayeva, J. J. Allahverdiyeva, “Maximum principle for stochastic systems with variable delay”, Reports of NSA of Azerbaijan LIX, 2003, no. 5-6, 61-65 (Russian)
[5] NSA of Azerbaijan, Math. and Mech. Series, Baku, XXVI:1 (2006), 3-14
[6] I. Ekeland, “Nonconvex minimization problem”, Bull. Amer. Math. Soc.,(NS), 1 (1979), 443–474