On differentiability of solution to
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 243-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stochastic differential equation with pathwise integral with respect to fractional Brownian motion is considered. For solution of such equation, under different conditions, the Malliavin differentiability is proved. Under infinite differentiability and boundedness of derivatives of the coefficients it is proved that the solution is infinitely differentiable in the Malliavin sense with all derivatives bounded.
Keywords: Fractional Brownian motion, pathwise integral, stochastic differential equation, Malliavin derivative.
@article{THSP_2007_13_2_a7,
     author = {Yu. S. Mishura and G. M. Shevchenko},
     title = {On differentiability of solution to},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {243--250},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a7/}
}
TY  - JOUR
AU  - Yu. S. Mishura
AU  - G. M. Shevchenko
TI  - On differentiability of solution to
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 243
EP  - 250
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a7/
LA  - en
ID  - THSP_2007_13_2_a7
ER  - 
%0 Journal Article
%A Yu. S. Mishura
%A G. M. Shevchenko
%T On differentiability of solution to
%J Teoriâ slučajnyh processov
%D 2007
%P 243-250
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a7/
%G en
%F THSP_2007_13_2_a7
Yu. S. Mishura; G. M. Shevchenko. On differentiability of solution to. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 243-250. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a7/

[1] E. Alòs, D. Nualart, “Stochastic integration with respect to the fractional Brownian motion”, Stoch. Stoch. Rep., 75:3 (2002), 129-–152

[2] S. Darses, I. Nourdin Stochastic derivatives for fractional diffusions, arXiv: (2006). Arxiv preprint math.PR/0604315

[3] M. L. Klepstyna, P. E. Kloeden, V. V. Anh, Existence and uniqueness theorems for fBm stochastic differential equations, Problems Inform. Transmission, 34 (1999), 332-–341

[4] K. Kubilius, “The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion”, Lit. Math. J., 40 (2000), 104-–110

[5] Yu. S. Mishura, “Quasilinear stochastic di?erential equations with fractional Brownian component”, Teor. Imovirn. Mat. Stat., 2003, no. 68, 95-–106

[6] D. Nualart, The Malliavin Calculus and Related Topics, Springer Verlag, Berlin, 1996

[7] D. Nualart, A. Răşcanu, “Differential equations driven by fractional Brownian motion”, Collect. Math., 53 (2000), 55-–81

[8] D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Mathematics Preprint Series of the IMUB, no. 371, 2005

[9] A. A. Ruzmaikina, “Stieltjes integral of Holder continuous functions with applications to fractional Brownian motion”, J. Statist. Phys., 100 (2000), 1049-–1069

[10] M. Zähle, “Integration with respect to fractal functions and stochastic calculus, I”, Probab. Theory Related Fields, 111 (1998), 333-–374