Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_2_a7, author = {Yu. S. Mishura and G. M. Shevchenko}, title = {On differentiability of solution to}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {243--250}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a7/} }
Yu. S. Mishura; G. M. Shevchenko. On differentiability of solution to. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 243-250. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a7/
[1] E. Alòs, D. Nualart, “Stochastic integration with respect to the fractional Brownian motion”, Stoch. Stoch. Rep., 75:3 (2002), 129-–152
[2] S. Darses, I. Nourdin Stochastic derivatives for fractional diffusions, arXiv: (2006). Arxiv preprint math.PR/0604315
[3] M. L. Klepstyna, P. E. Kloeden, V. V. Anh, Existence and uniqueness theorems for fBm stochastic differential equations, Problems Inform. Transmission, 34 (1999), 332-–341
[4] K. Kubilius, “The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion”, Lit. Math. J., 40 (2000), 104-–110
[5] Yu. S. Mishura, “Quasilinear stochastic di?erential equations with fractional Brownian component”, Teor. Imovirn. Mat. Stat., 2003, no. 68, 95-–106
[6] D. Nualart, The Malliavin Calculus and Related Topics, Springer Verlag, Berlin, 1996
[7] D. Nualart, A. Răşcanu, “Differential equations driven by fractional Brownian motion”, Collect. Math., 53 (2000), 55-–81
[8] D. Nualart, B. Saussereau, Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion, Mathematics Preprint Series of the IMUB, no. 371, 2005
[9] A. A. Ruzmaikina, “Stieltjes integral of Holder continuous functions with applications to fractional Brownian motion”, J. Statist. Phys., 100 (2000), 1049-–1069
[10] M. Zähle, “Integration with respect to fractal functions and stochastic calculus, I”, Probab. Theory Related Fields, 111 (1998), 333-–374