Interpolation of homogeneous and
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 234-242
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider interpolation of homogeneous and isotropic random field in the center of the sphere by uniform distributed observations on the sphere. The asymptotic behavior of the mean-square interpolation error is investigated. The degree of convergence to zero of the mean-square interpolation error is obtained. Efficient volume of the set of observations is given.
Keywords:
Homogeneous and isotropic random field, interpolation in the center of the sphere, mean-square interpolation error, asymptotic behavior.
@article{THSP_2007_13_2_a6,
author = {Nataliya Semenovs'ka},
title = {Interpolation of homogeneous and},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {234--242},
year = {2007},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a6/}
}
Nataliya Semenovs'ka. Interpolation of homogeneous and. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 234-242. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a6/
[1] M. V. Kartashov, “Finite-dimensional interpolation of a random field on the plane”, Probability Theory and Math. Statist., 51 (1994), 53–-61
[2] N. Semenovs’ka, “Interpolation problem for homogeneous and isotropic random field”, Probability Theory and Math. Statist., 74 (2006), 150-–158 (Ukrainian)
[3] M. I. Yadrenko, Spectral theory of random fields, Vischa Shkola, Kiev, 1980 (Russian)