Interpolation of homogeneous and
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 234-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider interpolation of homogeneous and isotropic random field in the center of the sphere by uniform distributed observations on the sphere. The asymptotic behavior of the mean-square interpolation error is investigated. The degree of convergence to zero of the mean-square interpolation error is obtained. Efficient volume of the set of observations is given.
Keywords: Homogeneous and isotropic random field, interpolation in the center of the sphere, mean-square interpolation error, asymptotic behavior.
@article{THSP_2007_13_2_a6,
     author = {Nataliya Semenovs'ka},
     title = {Interpolation of homogeneous and},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {234--242},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a6/}
}
TY  - JOUR
AU  - Nataliya Semenovs'ka
TI  - Interpolation of homogeneous and
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 234
EP  - 242
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a6/
LA  - en
ID  - THSP_2007_13_2_a6
ER  - 
%0 Journal Article
%A Nataliya Semenovs'ka
%T Interpolation of homogeneous and
%J Teoriâ slučajnyh processov
%D 2007
%P 234-242
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a6/
%G en
%F THSP_2007_13_2_a6
Nataliya Semenovs'ka. Interpolation of homogeneous and. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 234-242. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a6/

[1] M. V. Kartashov, “Finite-dimensional interpolation of a random field on the plane”, Probability Theory and Math. Statist., 51 (1994), 53–-61

[2] N. Semenovs’ka, “Interpolation problem for homogeneous and isotropic random field”, Probability Theory and Math. Statist., 74 (2006), 150-–158 (Ukrainian)

[3] M. I. Yadrenko, Spectral theory of random fields, Vischa Shkola, Kiev, 1980 (Russian)