Some properties of weight functions
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 194-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

New representations for weight functions in Tauberian theorems are derived. The representations are given by recurrent formulae. Obtained results are used to study properties of the weight functions.
Keywords: Tauberian theorems, random fields, weight functions, asymptotics.
@article{THSP_2007_13_2_a3,
     author = {Andriy Olenko},
     title = {Some properties of weight functions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {194--204},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/}
}
TY  - JOUR
AU  - Andriy Olenko
TI  - Some properties of weight functions
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 194
EP  - 204
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/
LA  - en
ID  - THSP_2007_13_2_a3
ER  - 
%0 Journal Article
%A Andriy Olenko
%T Some properties of weight functions
%J Teoriâ slučajnyh processov
%D 2007
%P 194-204
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/
%G en
%F THSP_2007_13_2_a3
Andriy Olenko. Some properties of weight functions. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 194-204. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/

[1] A. Olenko, B. Klykavka, “Some properties of weight functions in Tauberian theorems. I”, Theory of Stoch. Proc., 12 (28):3-4 (2006)

[2] A. Olenko, “Tauberian theorems for random fields with OR asymptotics. I”, Theory Probab. and Math. Stat., 73 (2005), 120–133

[3] A. Olenko, “Tauberian theorems for random fields with OR asymptotics. II”, Theory Probab. and Math. Stat., 74 (2006), 81–97

[4] A. Olenko, B. Klykavka, “Tauberian theorem for random fields on plane”, Reports of the National Academy of Sciences of Ukraine, 6 (2006), 19–25 (in Ukrainian)

[5] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1995

[6] H. Bateman, A. Erdelyi, Tables of integral transforms, v. 1, McGrow-Hill, New York, 1954