Some properties of weight functions
Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 194-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New representations for weight functions in Tauberian theorems are derived. The representations are given by recurrent formulae. Obtained results are used to study properties of the weight functions.
Keywords: Tauberian theorems, random fields, weight functions, asymptotics.
@article{THSP_2007_13_2_a3,
     author = {Andriy Olenko},
     title = {Some properties of weight functions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {194--204},
     year = {2007},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/}
}
TY  - JOUR
AU  - Andriy Olenko
TI  - Some properties of weight functions
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 194
EP  - 204
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/
LA  - en
ID  - THSP_2007_13_2_a3
ER  - 
%0 Journal Article
%A Andriy Olenko
%T Some properties of weight functions
%J Teoriâ slučajnyh processov
%D 2007
%P 194-204
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/
%G en
%F THSP_2007_13_2_a3
Andriy Olenko. Some properties of weight functions. Teoriâ slučajnyh processov, Tome 13 (2007) no. 2, pp. 194-204. http://geodesic.mathdoc.fr/item/THSP_2007_13_2_a3/

[1] A. Olenko, B. Klykavka, “Some properties of weight functions in Tauberian theorems. I”, Theory of Stoch. Proc., 12 (28):3-4 (2006)

[2] A. Olenko, “Tauberian theorems for random fields with OR asymptotics. I”, Theory Probab. and Math. Stat., 73 (2005), 120–133

[3] A. Olenko, “Tauberian theorems for random fields with OR asymptotics. II”, Theory Probab. and Math. Stat., 74 (2006), 81–97

[4] A. Olenko, B. Klykavka, “Tauberian theorem for random fields on plane”, Reports of the National Academy of Sciences of Ukraine, 6 (2006), 19–25 (in Ukrainian)

[5] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1995

[6] H. Bateman, A. Erdelyi, Tables of integral transforms, v. 1, McGrow-Hill, New York, 1954