Asymptotically optimal estimator of
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The difference equations $\xi_k=af(\xi_{k-1})+\varepsilon_k,$ where$\varepsilon_k$ is a square integrable difference martingale, and the differential equation $d\xi=-af(\xi)dt+d\eta,$ where $\eta$ is a square integrable martingale, are considered. A family of estimators depending, besides the sample size n (or the observation period, if time is continuous) on some random Lipschitz functions is constructed. Asymptotic optimality of this estimators is investigated.
Keywords: estimator, optimization
Mots-clés : Martingale, convergence.
@article{THSP_2007_13_1_a7,
     author = {Dmytro Ivanenko},
     title = {Asymptotically optimal estimator of},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a7/}
}
TY  - JOUR
AU  - Dmytro Ivanenko
TI  - Asymptotically optimal estimator of
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 77
EP  - 85
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a7/
LA  - en
ID  - THSP_2007_13_1_a7
ER  - 
%0 Journal Article
%A Dmytro Ivanenko
%T Asymptotically optimal estimator of
%J Teoriâ slučajnyh processov
%D 2007
%P 77-85
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a7/
%G en
%F THSP_2007_13_1_a7
Dmytro Ivanenko. Asymptotically optimal estimator of. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 77-85. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a7/

[1] A. Ya. Dorogovtsev, Estimation theory for parameters of random processes, Kyiv University Press, Kyiv, 1982 (Russian)

[2] A. P. Yurachkivsky, D. O. Ivanenko, “Matrix parameter estimation in an autoregression model with non-stationary noise”, Th. Prob. Math. Stat., 72 (2005), 158-–172 (Ukranian)

[3] L. E. Elsholz, Differential equations and calculus of variations, Nauka, Moscow, 1969 (Russian)

[4] K. L. Chung, R. J. Williams, Introduction to stochastic integration, Mir, Moscow, 1987 (Russian)

[5] A. P. Yurachkivsky, D. O. Ivanenko, “Matrix parameter estimation in an autoregression model”, Theory of Stochastic Processes, 12(28):1-2 (2006), 154–161

[6] R. Sh. Liptser, A. N. Shiryaev, Theory of martingales, Nauka, Moscow, 1986 (Russian)

[7] J. Kelley, General topology, Nauka, Moscow, 1981 (Russian)