Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2007_13_1_a3, author = {Anna Bondarenko}, title = {A limit theorem for semi-markov process}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {35--43}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a3/} }
Anna Bondarenko. A limit theorem for semi-markov process. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a3/
[1] H. I. Bondarenko, “On some consequences of the equation for the Markov renewal function of a semi-Markov process”, Ukrain. Mat. Zh., 56:12 (2004), 1684-–1690
[2] A. N. Korlat, V. N. Kuznetsov, M. M. Novikov, A. F. Turbin, Semi-Markovm models of renewal and queuing systems, Shtiintsa, Kishinev, 1991
[3] V. S. Korolyuk, A. F. Turbin, Mathematical foundations for phase consolidation of complex systems, Naukova Dumka, Kyiv, 1978
[4] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Nauka, Moscow, 1972
[5] V. M. Shurenkov, Ergodic Markov processes, Nauka, Moscow, 1989
[6] V. S. Korolyuk, V. V. Swishchuk, Evolution stochastic systems. Algorithms of averaging and diffusive approximation, Ins. of mat. of Ukraine, Kyiv, 2000
[7] C. J. Stone, “On characteristic functions and renewal theory”, Trans. Amer. Math. Soc., 120:2 (1965), 327-–347
[8] B. A. Sevastianov, “Renewal type equations and moment coefficients of branching processes”, Mat. Notes., 3:1 (1968), 3–14