Results on fractal measure
Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{THSP_2007_13_1_a1,
     author = {Alina Barbulescu},
     title = {Results on fractal measure},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a1/}
}
TY  - JOUR
AU  - Alina Barbulescu
TI  - Results on fractal measure
JO  - Teoriâ slučajnyh processov
PY  - 2007
SP  - 13
EP  - 22
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a1/
LA  - en
ID  - THSP_2007_13_1_a1
ER  - 
%0 Journal Article
%A Alina Barbulescu
%T Results on fractal measure
%J Teoriâ slučajnyh processov
%D 2007
%P 13-22
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a1/
%G en
%F THSP_2007_13_1_a1
Alina Barbulescu. Results on fractal measure. Teoriâ slučajnyh processov, Tome 13 (2007) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/THSP_2007_13_1_a1/

[1] A. Bărbulescu, “La finitude d’une $h$-mesure Hausdorff d’un ensemble de points dans le plan”, Ann. Univ. Valahia Targoviste, 1995/1996, fasc.II,, 93–99

[2] A. Bărbulescu, “On the $h$-measure of a set”, Revue Roumaine de Mathématique pures and appliquées, tome XLVII:5–6 (2002), 547–552

[3] A. Bărbulescu, “New results about the $h$-measure of a set”, Analysis and Optimization of Differential Systems, Kluwer Academic Publishers, 2003, 43–48

[4] A. Bărbulescu, “About some properties of the Hausdorff measure”, Proceedings of the 10-th Symposium of Mathematics and its applications (November, 6–9, 2003, Timisoara, Romania), 2003, 17–22

[5] A. S. Besicovitch, H. D. Ursell, “Sets of fractional dimension (V): On dimensional numbers of some continuous curves”, London Math. Soc. J., 12 (1937), 118–125

[6] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, Cambridge University, 1985

[7] K. J. Falconer, Fractal geometry: Mathematical foundations and applications, J.Wiley Sons Ltd., 1990

[8] J. E. Hutchinson, “Fractals and Self Similarity”, Indiana University Math. Journal, 30:5 (1981), 713–747

[9] P. A. P. Moran, “Additive functions of intervals and Hausdorff measure”, Proceedings of Cambridge Phil. Soc., 42 (1946), 15–23

[10] S. J. Taylor, “On the connection between Hausdorff measures and generalized capacity”, Proceedings of Cambridge Phil. Soc., 57 (1961), 524–531

[11] T. F. Xie, S. P. Zhou, “On a class of fractal functions with graph Box dimension 2”, Chaos, Solitons and Fractals, 22 (2004), 135–139

[12] K. Yao, W. Y. Su, S. P. Zhou, “On the connection between the order of fractional calculus and the dimensions of a fractal function”, Chaos, Solitons and Fractals, 23 (2005), 621–629

[13] S. P. Zhou, G. L. He, T. F. Xie, “On a class of fractals; the constructive structure”, Chaos, Solitons and Fractals, 19 (2004), 1099–1104