Cyclic sets from the nerve of a group and the Böhm-Ştefan construction
Theory and applications of categories, Tome 44 (2025), pp. 181-195.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Böhm and Ştefan developed a general method of construction of cyclic objects from (op)algebras over distributive laws of monads. The goal of this note is to show that all the cyclic sets resulting from the twisted nerve of a group G arise from the Böhm-Ştefan construction.
Publié le :
Classification : 18G90, 19D55
Keywords: cyclic objects, duplicial objects, twisted nerved of a group, Böhm-Ştefan construction
@article{TAC_2025_44_a4,
     author = {John Boiquaye},
     title = {Cyclic sets from the nerve of a group and the {B\"ohm-\c{S}tefan} construction},
     journal = {Theory and applications of categories},
     pages = {181--195},
     publisher = {mathdoc},
     volume = {44},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_44_a4/}
}
TY  - JOUR
AU  - John Boiquaye
TI  - Cyclic sets from the nerve of a group and the Böhm-Ştefan construction
JO  - Theory and applications of categories
PY  - 2025
SP  - 181
EP  - 195
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_44_a4/
LA  - en
ID  - TAC_2025_44_a4
ER  - 
%0 Journal Article
%A John Boiquaye
%T Cyclic sets from the nerve of a group and the Böhm-Ştefan construction
%J Theory and applications of categories
%D 2025
%P 181-195
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_44_a4/
%G en
%F TAC_2025_44_a4
John Boiquaye. Cyclic sets from the nerve of a group and the Böhm-Ştefan construction. Theory and applications of categories, Tome 44 (2025), pp. 181-195. http://geodesic.mathdoc.fr/item/TAC_2025_44_a4/