Sifted colimits, strongly finitary monads and continuous algebras
Theory and applications of categories, Tome 44 (2025), pp. 84-131.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We characterize strongly finitary monads on categories Pos, CPO and DCPO as precisely those preserving sifted colimits. Or, equivalently, enriched finitary monads preserving reflexive coinserters. We study sifted colimits in general enriched categories. For CPO and DCPO we characterize varieties of continuous algebras as precisely the monadic categories for strongly finitary monads.
Publié le :
Classification : 18C15
Keywords: sifted colimit, monad, continuous algebra
@article{TAC_2025_44_a2,
     author = {Ji\v{r}{\'\i} Ad\'amek and Mat\v{e}j Dost\'al and Ji\v{r}{\'\i} Velebil},
     title = {Sifted colimits, strongly finitary monads and continuous
	algebras},
     journal = {Theory and applications of categories},
     pages = {84--131},
     publisher = {mathdoc},
     volume = {44},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_44_a2/}
}
TY  - JOUR
AU  - Jiří Adámek
AU  - Matěj Dostál
AU  - Jiří Velebil
TI  - Sifted colimits, strongly finitary monads and continuous
	algebras
JO  - Theory and applications of categories
PY  - 2025
SP  - 84
EP  - 131
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_44_a2/
LA  - en
ID  - TAC_2025_44_a2
ER  - 
%0 Journal Article
%A Jiří Adámek
%A Matěj Dostál
%A Jiří Velebil
%T Sifted colimits, strongly finitary monads and continuous
	algebras
%J Theory and applications of categories
%D 2025
%P 84-131
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_44_a2/
%G en
%F TAC_2025_44_a2
Jiří Adámek; Matěj Dostál; Jiří Velebil. Sifted colimits, strongly finitary monads and continuous
	algebras. Theory and applications of categories, Tome 44 (2025), pp. 84-131. http://geodesic.mathdoc.fr/item/TAC_2025_44_a2/