An enriched small object argument over a cofibrantly generated base
Theory and applications of categories, Tome 44 (2025), pp. 439-473.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The small object argument is a method for transfinitely constructing weak factorization systems originally motivated by homotopy theory. We establish a variant of the small object argument that is enriched over a cofibrantly generated weak factorization system. This enriched variant of the small object argument subsumes the ordinary small object argument for categories and also certain variants of the small object argument for 2-categories, (2,1)-categories, dg-categories and simplicially enriched categories.
Publié le :
Classification : 18D20, 18N40
Keywords: enriched category, small object argument, weak factorization system, copower, Day convolution, actegory
@article{TAC_2025_44_a15,
     author = {Jan Jurka},
     title = {An enriched small object argument over a cofibrantly generated base},
     journal = {Theory and applications of categories},
     pages = {439--473},
     publisher = {mathdoc},
     volume = {44},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_44_a15/}
}
TY  - JOUR
AU  - Jan Jurka
TI  - An enriched small object argument over a cofibrantly generated base
JO  - Theory and applications of categories
PY  - 2025
SP  - 439
EP  - 473
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_44_a15/
LA  - en
ID  - TAC_2025_44_a15
ER  - 
%0 Journal Article
%A Jan Jurka
%T An enriched small object argument over a cofibrantly generated base
%J Theory and applications of categories
%D 2025
%P 439-473
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_44_a15/
%G en
%F TAC_2025_44_a15
Jan Jurka. An enriched small object argument over a cofibrantly generated base. Theory and applications of categories, Tome 44 (2025), pp. 439-473. http://geodesic.mathdoc.fr/item/TAC_2025_44_a15/