Every theory is eventually of presheaf type
Theory and applications of categories, Tome 44 (2025), pp. 344-371.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a detailed and self-contained introduction to the theory of λ-toposes and prove the following: 1) A λ-separable λ-topos has enough λ-points. 2) The classifying λ-topos of a κ-site (C,E) is a presheaf topos (assuming κ ⊲ λ =λ ^< λ, |C|, |E| < λ).
Publié le :
Classification : 18F10, 03G30
Keywords: κ-topos, theory of presheaf type
@article{TAC_2025_44_a11,
     author = {Christian Esp{\'\i}ndola and Krist\'of Kanalas},
     title = {Every theory is eventually of presheaf type},
     journal = {Theory and applications of categories},
     pages = {344--371},
     publisher = {mathdoc},
     volume = {44},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_44_a11/}
}
TY  - JOUR
AU  - Christian Espíndola
AU  - Kristóf Kanalas
TI  - Every theory is eventually of presheaf type
JO  - Theory and applications of categories
PY  - 2025
SP  - 344
EP  - 371
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_44_a11/
LA  - en
ID  - TAC_2025_44_a11
ER  - 
%0 Journal Article
%A Christian Espíndola
%A Kristóf Kanalas
%T Every theory is eventually of presheaf type
%J Theory and applications of categories
%D 2025
%P 344-371
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_44_a11/
%G en
%F TAC_2025_44_a11
Christian Espíndola; Kristóf Kanalas. Every theory is eventually of presheaf type. Theory and applications of categories, Tome 44 (2025), pp. 344-371. http://geodesic.mathdoc.fr/item/TAC_2025_44_a11/