Every theory is eventually of presheaf type
Theory and applications of categories, Tome 44 (2025), pp. 344-371
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We give a detailed and self-contained introduction to the theory of λ-toposes and prove the following: 1) A λ-separable λ-topos has enough λ-points. 2) The classifying λ-topos of a κ-site (C,E) is a presheaf topos (assuming κ ⊲ λ =λ ^< λ, |C|, |E| < λ).
Publié le :
Classification :
18F10, 03G30
Keywords: κ-topos, theory of presheaf type
Keywords: κ-topos, theory of presheaf type
@article{TAC_2025_44_a11,
author = {Christian Esp{\'\i}ndola and Krist\'of Kanalas},
title = {Every theory is eventually of presheaf type},
journal = {Theory and applications of categories},
pages = {344--371},
year = {2025},
volume = {44},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2025_44_a11/}
}
Christian Espíndola; Kristóf Kanalas. Every theory is eventually of presheaf type. Theory and applications of categories, Tome 44 (2025), pp. 344-371. http://geodesic.mathdoc.fr/item/TAC_2025_44_a11/