A Finite Algebraic Presentation of Lawvere Theories in the
Object-Classifier Topos
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 181-195
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Over the topos of sets, the notion of Lawvere theory is infinite
countably-sorted algebraic but not one-sorted algebraic. Shifting viewpoint over the object-classifier topos, a finite algebraic
presentation of Lawvere theories is considered.
Publié le :
Classification :
08C05, 18C10, 18C15, 18C40, 18E99
Keywords: Lawvere theory, algebraic theory, algebraic category, equational presentation, abstract clone, simultaneous substitution, symmetric monoid, symmetric monad, symmetric distributive law, single-variable substitution, object-classifier topos
Keywords: Lawvere theory, algebraic theory, algebraic category, equational presentation, abstract clone, simultaneous substitution, symmetric monoid, symmetric monad, symmetric distributive law, single-variable substitution, object-classifier topos
@article{TAC_2025_43_a6,
author = {Marcelo Fiore and Sanjiv Ranchod},
title = {A {Finite} {Algebraic} {Presentation} of {Lawvere} {Theories} in the
{Object-Classifier} {Topos}},
journal = {Theory and applications of categories},
pages = {181--195},
year = {2025},
volume = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/}
}
TY - JOUR AU - Marcelo Fiore AU - Sanjiv Ranchod TI - A Finite Algebraic Presentation of Lawvere Theories in the Object-Classifier Topos JO - Theory and applications of categories PY - 2025 SP - 181 EP - 195 VL - 43 UR - http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/ LA - en ID - TAC_2025_43_a6 ER -
Marcelo Fiore; Sanjiv Ranchod. A Finite Algebraic Presentation of Lawvere Theories in the Object-Classifier Topos. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 181-195. http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/