A Finite Algebraic Presentation of Lawvere Theories in the Object-Classifier Topos
Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 181-195.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Over the topos of sets, the notion of Lawvere theory is infinite countably-sorted algebraic but not one-sorted algebraic. Shifting viewpoint over the object-classifier topos, a finite algebraic presentation of Lawvere theories is considered.
Publié le :
Classification : 08C05, 18C10, 18C15, 18C40, 18E99
Keywords: Lawvere theory, algebraic theory, algebraic category, equational presentation, abstract clone, simultaneous substitution, symmetric monoid, symmetric monad, symmetric distributive law, single-variable substitution, object-classifier topos
@article{TAC_2025_43_a6,
     author = {Marcelo Fiore and Sanjiv Ranchod},
     title = {A {Finite} {Algebraic} {Presentation} of {Lawvere} {Theories}  in the
  {Object-Classifier} {Topos}},
     journal = {Theory and applications of categories},
     pages = {181--195},
     publisher = {mathdoc},
     volume = {43},
     year = {2025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/}
}
TY  - JOUR
AU  - Marcelo Fiore
AU  - Sanjiv Ranchod
TI  - A Finite Algebraic Presentation of Lawvere Theories  in the
  Object-Classifier Topos
JO  - Theory and applications of categories
PY  - 2025
SP  - 181
EP  - 195
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/
LA  - en
ID  - TAC_2025_43_a6
ER  - 
%0 Journal Article
%A Marcelo Fiore
%A Sanjiv Ranchod
%T A Finite Algebraic Presentation of Lawvere Theories  in the
  Object-Classifier Topos
%J Theory and applications of categories
%D 2025
%P 181-195
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/
%G en
%F TAC_2025_43_a6
Marcelo Fiore; Sanjiv Ranchod. A Finite Algebraic Presentation of Lawvere Theories  in the
  Object-Classifier Topos. Theory and applications of categories, Lawvere Festschrift, Tome 43 (2025), pp. 181-195. http://geodesic.mathdoc.fr/item/TAC_2025_43_a6/